Возможно четыре формата целых чисел:



Целое число;

Короткое целое число;

Длинное целое число;

Упакованное десятичное число.

 

Целое число занимает два байта. Его формат полностью соответствует используемому центральным процессором. Для представления отрицательных чисел используется дополнительный код. Короткое целое и длинное целое имеют аналогичные форматы, но занимают, соответственно, 4 и 8 байтов.

 

Упакованное десятичное число занимает 10 байтов. Это число содержит 18 десятичных цифр, расположенных по две в каждом байте. Знак упакованного десятичного числа находится в старшем бите самого левого байта. Остальные биты старшего байта должны быть равны 0.

 

Для целых чисел используется дополнительный код.

 

В дополнительном коде положительные числа содержат нуль в самом старшем бите числа:

XXX XXXX XXXX XXXX

 

Для получения отрицательного числа в дополнительном коде из положительного надо инвертировать каждый бит числа и затем прибавить к числу единицу.

Например, число +5 в дополнительном коде выглядит следующим образом:

 

0000 0000 0000 0101 = +5

 

Для получения числа -5 вначале инвертируем значение каждого бита:

 

1111 1111 1111 1010

 

Теперь прибавим к полученному числу +1:

 

1111 1111 1111 1011 = -5

Система команд сопроцессора

 

Возможны три формата команд сопроцессора, аналогичные форматам команд центральных процессоров 8086/80286/80386. Это команды с обращением к оперативной памяти, команды с обращением к одному из численных регистров и команды без операндов, заданных явным образом.

 

Все команды сопроцессора можно разделить на несколько групп:

 

Команды пересылки данных;

Арифметические команды;

Команды сравнений чисел;

Трансцендентные команды;

Управляющие команды.

Команды пересылки данных предназначены для загрузки чисел из оперативной памяти в численные регистры, записи данных из численных регистров в оперативную память, копирования данных из одного численного регистра в другой.

 

Арифметические команды выполняют такие операции, как сложение, вычитание, умножение, деление, извлечение квадратного корня, нахождение частичного остатка, округление и т.п.

 

Команды сравнения сравнивают вещественные и целые числа, выполняют анализ чисел.

Трансцендентные команды предназначены для вычисления различных тригонометрических, логорифмических, показательных и гиперболических функций - sin(), cos(), tg() и т.п.

 

Последняя группа команд - управляющие команды - обеспечивают установку режима работы арифметического

сопроцессора, его сброс и инициализацию, перевод сопроцессора в защищенный режим работы и т.д.

 

Оперативная (основная) память ЭВМ (ОЗУ). Назначение, программная модель. Элементная база ОЗУ.

 

Операти́вная па́мять — часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти. Передача данных в/из оперативную память процессором производится непосредственно, либо через сверхбыструю память.

 

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

 

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

 

Физические виды ОЗУ: На сегодня наибольшее распространение имеют два вида ОЗУ:

SRAM (Static RAM)

ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто/ или нет статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.

 

DRAM (Dynamic RAM)

Более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени — для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.

 

Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах.

 

Назначение ОЗУ

- Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.

- Хранение результатов вычислений, произведенных процессором.

- Считывание (или запись) содержимого ячеек.

 

Особенности работы ОЗУ

 

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствуют в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

 

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

 


Дата добавления: 2020-01-07; просмотров: 190; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!