Тупиковая водопроводная сеть. Методика проверочного гидравлического расчета.



Гидравлический расчет внутренней водопроводной сети выполняется для определения диаметров труб и необходимого напора в системе Особенностью расчета сети, питаемой из одной точки, с подключенными сосредоточенными потребителями является то, что определение диаметров участков ведут по суммарным расходам на участках и допускаемой потере давления. Тупиковые системы состоят из магистрали и отдельных ветвей, заканчивающихся непосредственно у потребителя.

Исходными данными для расчета тупиковой системы являются: длины отдельных участков li, расходы у потребителей Qi: отделяемые в каждом узле магистральной линии (узловые расходы) и непосредственно в конце участка (возможная путевая раздача на каждом или некоторых участках системы в данном примере не рассматривается). Кроме этого, могут быть заданы высотные привязки (геодезические, строительные или монтажные) в узловых точках системы и у потребителей и так называемые допускаемые остаточные статические (потенциальные) напоры, равные разности отметок пьезометрической линии и отметок трубопровода в узловых точках системы. Величина необходимого остаточного напора зависит от объекта, который обеспечивается водой и устанавливается соответствующими техническими условиями. При расчете обязательным является условие, чтобы фактические остаточные напоры у  потребителей (hC, hD, hЕ, см. рис. 5.13) были больше или равнялись заданным по технологическим требованиям. Как уже известно, напор, созданный в начале системы, при движении жидкости тратится на создание необходимого остаточного напора и на потери напора в гидравлических сопротивлениях. Определяются расходы в сечениях участков через заданные расходы у потребителей: Q1 = QC+ QD + QЕ; Q2 = QD + QЕ;

Q3 = QC; Q4 = QD; Q5 = QЕ.

При незаданных диаметрах участков они предварительно определяются, исходя из значения заданной или принятой экономически наивыгоднейшей скорости

.    Полученные при расчете значения диаметров округляются до ближайшего значения из стандартного ряда нормальных условных проходов. Как правило, берется большее значение, чтобы не превышать назначенную величину скорости. Но при больших расхождениях с большим диаметром можно принять ближайшее меньшее значение.

Рассчитываются полные потери напора на каждом участке  hwi = (1,05?1,15)·hli = (1,05?1,15) АiQi2li,

где 1,05?1,15 - поправочный коэффициент на местные сопротивления, принимаемый в соответствии с условием задания.

Находится напор, потребный для подачи жидкости каждому потребителю по любому из направлений из условия последовательного соединения труб и создания у потребителя заданного остаточного напора. Для рассматриваемой схемы

до потребителя С: НС = hw1 + hw3 +hзад; до потребителя D: НD = hw1 + hw2 + hw4 +hзад; до потребителя Е: НЕ = hw1 + hw2 + hw5 +hзад.

(При выходе в атмосферу hзад не учитывается).

Потребный действующий напор в начале системы или высота водонапорной башни Н принимается по максимальной величине из полученных напоров.

Пьезометрическая линия для рассмотренной схемы, где потребители расположены на одном уровне, построена в аксонометрии (примерно). Здесь линия начального напора для каждого участка проведена параллельно начертанию участка. Затем от нее вниз в конце участка отложена величина потерь напора на участке. Минимальный остаточный напор у потребителя (в примере hD) равен заданному по условию задачиhзад.

Если рассчитываются системы для водоснабжения, очень важно учитывать геодезические отметки местности. Вначале рассчитывается магистральная линия, в качестве которой принимается наиболее нагруженная расходами, наиболее длинная и с наибольшими высотными отметками местности. Расчет участков магистрали аналогичен приведенному выше. Кроме рассмотренных остаточных напоров при расчете ответвлений требуется дополнительно учитывать высоты, на которые возможна подача жидкости.

Потери по длине для труб водоснабжения в соответствии со СНиП 2.04.02-84 (с изм. 1986 г., попр. 2000 г.) определяются по гидравлическому уклону I, который следует рассчитывать с учетом гидравлического сопротивления стыковых соединений

, где        (5.37)      Значения показателя степени m и коэффициентов А0, А1 и С1 для стальных, чугунных, железобетонных, асбестоцементных, пластмассовых и стеклянных труб должны приниматься по СНиП 2.04.02-84 (с изм. 1986 г., попр. 2000 г.) (ПРИЛОЖЕНИЕ, табл. 10).

 

8. Совместная работа центробежных насосов установки. Эксплуатационные параметры насосной установки при параллельной работе насосов. Ограничения на совместную работу насосов.

Насосы в насосных станциях и крупных установках, как правило, работают совместно, т.е. несколько насосов подают жидкость в одну систему. С общей точки зрения потребителя чаще интересует насосная система, обеспечивающая нужный напор и подачу. Такой системой выступает насосная станция. В отношении насосной станции вопрос регулирования напора и подачи может рассматриваться шире за счет возможностей соединения насосов параллельно и последовательно. При параллельном соединении насосов суммируется подача. при последовательном - напор. Если на насосной станции необходимо получить нужные рабочие параметры (Q и Н), то всегда существует возможность путем комбинаций набора ряда насосов с ограниченной подачей соединить их параллельно, чтобы получить большую подачу и последовательно - чтобы получить больший напор

При параллельном соединении не удается плавно соединить потоки, напорные трубопроводы из-за удобства монтажа заужают, делают лишние повороты. Это всё приводит к дополнительному сопротивлению и соответственно к смещению рабочей точки на меньшую подачу обоих насосов. Параллельной работой насосов называется одновременная подача перекачиваемой жидкости несколькими насосами в общий напорный коллектор. Необходимость в параллельной работе нескольких одинаковых или разных насосов возникает в тех случаях, когда невозможно обеспечить требуемый расход воды подачей одного насоса. Кроме того, поскольку водопотребление в городе неравномерно по часам суток и по сезонам года, то подачу насосной станции можно регулировать числом одновременно работающих насосов. При проектировании совместной работы центробежных насосов нужно хорошо знать их характеристики; подбирать насосы следует с учетом характеристики трубопровода. Центробежные насосы могут работать параллельно при условии равенства развиваемого напора. Если один из насосов имеет напор меньше, чем другие, то он может быть подключен на параллельную работу только в поле рекомендуемой работы. При повышении напора в системе этот насос может принимать участие в работе, но его КПД будет падать. При достижении максимального напора подача насоса будет равна 0. Дальнейшее увеличение напора в системе приведет к закрытию обратного клапана и выключению насоса из работы. Поэтому для параллельной работы следует подбирать насосы однотипные с равными или незначительно отличающимися напорами и подачами. Различные схемы параллельной работы насосов применяются весьма часто для водоснабжения и перекачивания сточных вод, где целесообразно подачу от нескольких насосов или станций объединять в общий коллектор.

 

Модели жидкой среды.

В зависимости от тех свойств получают различные ее модели. Под моделью реальной среды понимают такую гипотетическую среду, в которой учтены только некоторые из физических свойств, существенные для определенного круга явлений и технических задач. Одной из основных в гидромеханике является модель несжимаемой идеальной (или невязкой) жидкости. Так называется гипотетическая сплошная среда, обладающая текучестью, лишенная вязкости и полностью несжимаемая. С помощью этой модели с большой точностью решаются задачи гидростатики и выполняются многие теоретические выводы. Кроме того, эта модель является базой для других моделей, более полно учитывающих свойства реальных жидкостей. Более полно свойства реальной жидкости учитываются в модели вязкой несжимаемой жидкости, которая представляет собой среду, обладающую текучестью и вязкостью, но абсолютно несжимаемую, является достаточно широко применяемой в гидродинамике. Она позволяет получить точные решения полных уравнений движения лишь в ограниченном числе случаев с простейшими граничными условиями. Поэтому большое значение при использовании этой модели имеют приближенные решения уравнений.. Теория вязкой несжимаемой жидкости лишь в ограниченном числе случаев с простейшими граничными условиями позволяет получить точные решения полных уравнений движения. Гипотезу сплошности: упрощенные модели, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему, т.е. жидкость можно рассматривать как сплошную среду (континуум), лишенную молекул и межмолекулярных пространств. Кроме упомянутых моделей находят применение модели сжимаемой вязкой жидкости при расчете гидравлического удара или сжимаемой невязкой жидкости в некоторых расчетах газов и т. д.

 

Гидродинамическая муфта

Гидродинамическая муфта осуществляет немеханическое соединение валов: крутящий момент передается от одного вала другому посредством движения жидкости. Колесо, соединённое с ведущим валом, называется насосным колесом, а колесо, соединённое с ведомым валом, называется турбинным колесом. Моменты на насосном и турбинном колёсах всегда практически одинаковы. Насосное колесо представляет собой лопастной насос, турбинное — лопастной гидравлический двигатель. Оба эти колеса находятся в одном герметичном корпусе и максимально сближены друг с другом (но не соприкасаются), и жидкость при вращении насосного колеса попадает непосредственно на турбинное колесо, сообщая последнему вращающий момент.

Коэффициентом трансформации гидромуфты называют отношение угловой скорости ведомого вала к угловой скорости ведущего вала:  где ω2, — угловая скорость ведомого вала; ω1 — угловая скорость ведущего вала.

Гидродинамическая муфта создает плавное ускорение ведомого вала, а масло гасит вибрации от вала двигателя, так что они не сообщаются ведомому валу, и наоборот. Кроме того, при малых оборотах ведущее колесо муфты может вращаться вхолостую, не приводя в движение ведомое колесо. Одним из первоначальных применений гидромуфт были суда с дизельными двигателями; гидромуфта устанавливалась между двигателем и редуктором. Гидромуфты применяются в коробках передач автомобилей, некоторых тракторов, в авиации и других областях техники. +: Перед механическими муфтами, гидромуфты имеют те преимущества, что ограничивают максимальный передаваемый момент, и таким образом, предохраняют приводной двигатель от перегрузок (что особенно важно при пуске двигателя), а также сглаживают пульсации момента. -: Однако КПД гидравлической муфты ниже, чем КПД механической.


Дата добавления: 2020-01-07; просмотров: 214; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!