Измерение эл.сопротивления изоляции электродвигателя



Замер сопротивления изоляционного материала электродвигателей постоянного тока производится в следующих рабочих зонах:                                                                                                                                              - между катушками возбуждения и якорем;                                                                                                                        - между якорем, щётками, катушками возбуждения и корпусом.

Измерения должны проводиться на полностью отключённом от сети электродвигателе, а ещё до их начала между щётками и коллектором необходимо поместить специальную изолирующую прокладку. В асинхронных электродвигателях с короткозамкнутым ротором проверяют сопротивление изоляции всех обмоток статора по отношению к корпусу и между собой. Это справедливо для случая, когда на клеммную колодку выведены все шесть концов статорных обмоток. В том случае, когда на колодку выведены три её конца – измерение следует производить только относительно корпуса. У электродвигателей с фазным ротором проверяется сопротивление между статором и ротором, а также изоляция графитовых щёток относительно корпуса двигателя.

Измерение сопротивления изоляции обмоток силовых трансформаторов

Сопротивление изоляции обмоток силовых трансформаторов, имеющих параллельные ветки, делается меж ветвями, если при всем этом параллельные ветки могут быть выделены в электрически несвязанные цепи без распайки концов. Измерение сопротивления изоляции обмоток трансформаторов делается мегомметром меж каждой обмоткой и корпусом (землей) и меж обмотками при отсоединенных и заземленных на корпус других обмотках.

Состояние изоляции силовых трансформаторов характеризуется не только лишь абсолютным значением сопротивления изоляции, которое находится в зависимости от габаритов трансформаторов и используемых в нем материалов, и коэффициентом абсорбции (отношением сопротивления изоляции, измеренного два раза — через 15 и 60 с после приложения напряжения на испытуемом объекте. За начало отсчета допускается принимать начало вращения ручки мегаомметра.  

                                         Рис. 1. Схемы измерения сопротивления изоляции обмоток трансформатора: a – относительно корпуса; б – меж обмотками трансформатора

2. Хранение и подготовка кабелей для прокладки в траншеях и тоннелях.

Кабельные прокладки требуют меньших площадей по сравне­нию с воздушными и могут применяться при любых природных и атмосферных условиях.

Кабельные прокладки напряжением 6... 10 кВ применяются на предприятиях небольшой и средней мощности и в городских сетях.

Трасса кабельных линий выбирается кратчайшая с учетом наи­более дешевого обеспечения их защиты от механических повреждений, коррозии, вибрации, перегрева и от поврежде­ний при возникновении электрической дуги в сосед­нем кабеле.

Прокладка кабелем мо­жет осуществляться не­сколькими способами: в траншеях, каналах, тунне­лях, блоках, эстакадах. Внутри кабельных сооруже­ний и производственных по­мещений предусматривают прокладку кабелей на сталь­ных конструкциях различ­ного исполнения: на настенных конструкциях, лотках, в коробах, укреп­ленных на стенах.

Способ и конструктивное выполнение прокладки выбираются в зависимости от числа кабелей, условий трассы, наличия или отсут­ствия взрывоопасных газов тяжелее воздуха, степени загрязненно­сти почвы, требований эксплуатации, экономических факторов и т.п.

 

Прокладка кабелей в траншеях. Наиболее простой является про­кладка кабелей в траншеях. Она экономична и по расходу цветного металла, так как допустимые токи на кабели больше (при­мерно в 1,3 раза) при

 

прокладке в земле, чем в воздухе. Однако по ряду причин этот способ не получил широкого применения на про­мышленных предприятиях. Прокладка в траншеях не при­меняется:

на участках с большим чис­лом кабелей;

при большой насыщенности территории подземными и на­земными технологическими и транспортными коммуникаци­ями и другими сооружениями; на участках, где возможно разлитие горячего металла или жидкостей, разрушающе дей­ствующих на оболочку кабелей; в местах, где возможны блуж­дающие токи опасных значений, большие механические нагруз­ки, размытие почвы и т.п.

Опыт эксплуатации кабелей, про­ложенных в земляных траншеях, по­казал, что при всяких разрытиях ка­бели часто повреждаются. При прокладке в одной траншее шести кабелей и более вводится очень боль­шой снижающий коэффициент на допустимую токовую нагрузку. По­этому не следует прокладывать в одной траншее более шести кабелей. При большом числе кабелей предус­матриваются две рядом расположен­ные траншеи с расстоянием между ними 1,2 м.

Земляная траншея для укладки кабелей должна иметь глубину не менее 800 мм. На дне траншеи со­здают мягкую подушку толщиной

100 мм из просеянной земли. Глубина заложения кабеля должна быть не менее 700 мм. Ширина траншеи зависит от числа кабелей, прокладываемых в ней. Расстояние между несколькими кабелями напряжением до 10 кВ должно быть не менее 100 мм. Кабели укла­дывают на дне траншеи в один ряд. Сверху кабели засыпают слоем мягкого грунта. Для защиты кабельной линии напряжением выше 1 кВ от механических повреждений ее по всей длине поверх верхней подсыпки покрывают бетонными плитами или кирпичом, а линии напряжением до 1 кВ - только в местах вероятных разрытии.

Трассы кабельных линий прокладываются по непроезжей части на расстоянии не менее: 600 мм от фундаментов зданий, 500 мм до трубопроводов, 2000 мм до теплопроводов.

Прокладка кабелей в каналах. Прокладка кабелей в железобе­тонных каналах может быть наружной и внутренней. Этот способ прокладки более дорогостоящий, чем в траншеях. При вне-цеховой канализации на неохраняемой территории каналы прокла­дываются под землей на глубине 300 мм и более. Глубина канала не более 900 мм. На участках, где возможно разлитие расплавленного металла, жидкостей или других веществ, разрушительно действую­щих на оболочки кабелей, кабельные каналы применять нельзя.

Прокладка кабелей в туннелях. Прокладка в туннелях удобна и надежна в эксплуатации, но она оправдана лишь при большом чис­ле (более 30...40) кабелей, идущих в одном направлении, например, на главных магистралях, для связей между главной подстанцией и распределительной и других аналогичных случаях.

Туннели бывают проходные высотой 2100 мм и полу­проходные высотой 1500 мм. Пол у проходные туннели допускают­ся на коротких участках (до 10 м) в местах, затрудняющих прохож­дение туннелей нормальной высоты. Глубина заложения туннеля от верха покрытия принимается не менее 0,7 м.

Также существует прокладка кабелей в блоках, галереях и эстакадах.

                                  3.Трансформаторное масло.

Трансформаторные масла — минеральные масла высокой чистоты и низкой вязкости. Применяются для заливкисиловых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. Предназначено для изоляции находящихся под напряжением частей и узлов силового трансформатора, отвода тепла от нагревающихся при работе трансформатора частей, а также предохранения изоляции от увлажнения.                                                                                                 Трансформаторные масла выполняют функции дугогасящей среды. Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел, в свою очередь, в основном определяется наличием волокон и воды, поэтому механические примеси и вода в таких маслах должны полностью отсутствовать.Низкая температура застывания масел (-45°С и ниже) нужна для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшейвязкостью при температуре вспышки не ниже 95, 125, 135 и 150°С для разных марок.Наиболее важное свойство трансформаторных масел — это их стабильность против окисления, то есть, способность сохранять свои параметры при длительной работе.Обычно все сорта таких отечественных масел содержат эффективную антиокислительную присадку.                                                                 Эксплуатационные свойства трансформаторного масла определяются его химическим составом, который зависит главным образом от химического состава сырья и применяемых способов его очистки. Применяемые марки трансформаторного масла отличаются химическим составом и эксплуатационными свойствами и имеют различные области применения. В новые масляные трансформаторы следует заливать только свежие трансформаторные масла, не бывшие в эксплуатации. Каждая партия трансформаторного масла, применяемая для заливки и доливки трансформаторов, должна иметь сертификат завода-поставщика масла. Свежее трансформаторное масло, поступающее с нефтеперерабатывающих предприятий, перед заливкой в силовые трансформаторы следует очистить от имеющихся механических примесей, влаги и газов. Влага в трансформаторном масле может находиться в состоянии осадка, в виде эмульсии и в растворенном состоянии. Подготовленное для заливки трансформаторное масло полностью очищается от влаги, находящейся в эмульсионном состоянии и в виде отстоя. В растворенном состоянии влага не оказывает значительного влияния на электрическую прочность и тангенс угла потерь, однако способствует повышению окисляемости трансформаторного масла и снижению его стабильности. Поэтому достижение удовлетворительных значений пробивного напряжения и тангенса угла потерь трансформаторного масла не является окончательным критерием очистки. При атмосферном давлении в трансформаторном масле может быть растворено 10% воздуха. Перед заливкой в силовые трансформаторы, оборудованные азотной и пленочной защитой, трансформаторное масло должно быть дегазировано до остаточного газосодержания не более 0,1% массы. После очистки в масле должны отсутствовать механические примеси.


Дата добавления: 2019-11-16; просмотров: 148; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!