Выделяют 2 вида нервных волокон.
Безмиелиновые нервные волокна- один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.
Миелиновые нервные волокна- покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.
Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).
Механизм проведения возбуждения по нервному волокну
1885 г. - Л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи.
При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.
|
|
Доказательство наличия круговых токов:нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %.
Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:
1. миелиновые волокна- имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты;
|
|
2. безмиелиновые волокна- поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.
Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.
Классификация нервных волокон
Нервные волокна классифицируются по:
1. длительности потенциала действия;
2. строению (диаметру) волокна;
3. скорости проведения возбуждения.
Выделяют следующие группы нервных волокон:
|
|
1. группа А (альфа, бета, гамма, дельта) - самый короткий потенциал действия, самая толстая миелиновая оболочка, самая высокая скорость проведения возбуждения;
2. группа В - миелиновая оболочка менее выражена;
3. группа С - без миелиновой оболочки.
Синапсы ЦНС
Синапс – это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку).
Cтруктура синапса:
1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке);2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс);3) синаптическая щель (пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).
2) Существует несколько классификаций синапсов.
По локализации:
1) центральные синапсы;2) периферические синапсы.
Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы. Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:
|
|
1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;2) аксодендритный, образованный аксоном одного нейрона и дендритом другого;3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).
Различают несколько видов периферических синапсов:
1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.
Функциональная классификация синапсов:1) возбуждающие синапсы;2) тормозящие синапсы.
По механизмам передачи возбуждения в синапсах:1) химические;2) электрические.
Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов.
Различают несколько видов химических синапсов:1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.
Особенность электрических синапсов заключается в том, что передача возбуждения осуществляется при помощи электрического тока. Таких синапсов в организме обнаружено мало.
Синапсы имеют ряд физиологических свойств:1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;4) низкая лабильность синапса (100–150 имульсов в секунду).
Скорость проведения возбуждения через синапс намного меньше, чем по нервному волокну, так как здесь тратится время на активацию пресинаптической мембраны, переход через нее кальция, выделение ацетилхолина в синаптическую щель, деполяризацию постсинаптической мембраны, развитие ПКП.Синаптическая передача возбуждения имеет рад свойств:
1) Наличие медиатора в пресинаптической части синапса;2) Относительная медиаторная специфичность синапса, т. е. каждый синапс имеет свой доминирующий медиатор;3) Переход постсинаптической мембраны под влиянием медиаторов в состояние де- или гиперполяризации;4) Возможность действия специфических блокирующих агентов на рецептирующие структуры постсинаптической мембраны;5) Увеличение длительности постсинаптического потенциала мембраны при подавлении действия ферментов, разрушающих синаптической медиатор;6) Развитие в постсинаптической мембране ПСП из миниатюрных потенциалов, обусловленных квантами медиатора;7) Зависимость длительности активной фазы действия медиатора в синапсе от свойств медиатора;8) Односторонность проведения возбуждения;9) Наличие хемочувствительных рецепторуправляемых каналов постсинаптической мембраны;10) Увеличение выделения квантов медиатора в синаптическую щель пропорционально частоте приходящих по аксону импульсов;11) Зависимость увеличения эффективности синаптической передачи от частоты использования синапса («эффект тренировки»);12) Утомляемость синапса, развивающаяся в результате длительного высокочастотного его стимулирования. В этом случае утомление может быть обусловлено истощением и несвоевременным синтезом медиатора в пресинаптической части синапса или глубокой, стойкой деполяризацией постсинаптической мембраны (пессимальное торможение).
Дата добавления: 2019-11-25; просмотров: 305; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!