Расчет передачи с зацеплением Новикова на контактную прочность
3.85. Этот расчет производят по аналогичным расчетным формулам на контактную прочность для косых зубьев эвольвентного зацепления {см. шаги 3.60, 3.61), но с учетом их большей нагрузочной способности. На основании опытных данных несущую способность зубьев зацепления Новикова по контактной прочности принимают в 1,75—2 раза больше, чем для эволь-вентных зацеплений.
Вспомните формулы расчета на контактную прочность цилиндрической эвольвентной прямозубой передачи.
3.86. Условия контакта в передачах с зацеплением Новикова отличаются от условий контакта по Герцу (малая разность r1 и r 2 большие значения ρ1 и ρ2). Контактные напряжения приближаются к напряжениям смятия. Расчет передач Новикова по контактным напряжениям применяют условно и ведут аналогично расчету с эвольвентным зацеплением.
Для зацепления Новикова коэффициент Ка = 33,6 МПа|/3, а при расчете эвольвентной передачи Ка = 49,5 ÷ 43 МПа'/3. Это объясняется тем, что несущая способность зубьев с зацеплением Новикова в 1,75—2 раза больше по сравнению с эвольвентными передачами.
Ширина колеса не влияет на прочность зубьев на излом при зацеплении Новикова. В передачах с зацеплением Новикова нагрузка, распределенная на площадке контакта, приложена не по всей длине зуба, как это имеет место в эвольвентном зацеплении, а лишь на сравнительно небольшом его участке. При этом значительная часть зуба практически ее не воспринимает. Следовательно, изменение ширины венца колеса b при неизменном угле наклона зуба в отличие от эвольвентных колес практически не сказывается на прочности зубьев на излом.
|
|
Планетарные зубчатые передачи . Устройство передачи и расчет на прочность
3.87. Передачи, имеющие зубчатые или фрикционные колеса с перемещаю-щимися осями, называют планетарными.
Наиболее распространена зубчатая однорядная планетарная передача (рис. 3.60). Она состоит из центрального колеса / с наружными зубьями, неподвижного (центрального) колеса 2 с внутренними зубьями и водила -на котором закреплены оси планетарных колес g (или сателлитов).
Рис. 3.60. Планетарная передача
Водило вместе с сателлитами вращается вокруг центральной оси, а сателлиты обкатываются по центральным колесам и вращаются вокруг своих осей, совершая движения, подобные движению планет. При неподвижном колесе 2 движение передается от колеса 1 к водилу h или наоборот.
Планетарную передачу, совершаемую подвижными звеньями (оба иен-тральных колеса и водило), называют дифференциалом. С помощью дифференциала одно движение можно разложить на два или два движения сложить в одно: от колеса 2 движение можно передавать одновременно колесу 1 и водилу h или от колес 1 и 2 к водилу /г и т. д. Планетарную передачу успешно применяют в транспортном машиностроении, станкостроении, приборостроении.
|
|
Какие профили зубьев применимы для планетарной зубчатой передачи?
3.88. Достоинства и недостатки планетарных передач.
Основное достоинство — широкие кинематические возможности, позволяющие использовать передачу в качестве редуктора коробки скоростей, передаточное число в которой изменяется путем поочередного торможения различных звеньев, и как дифференциальный механизм.
Планетарный принцип позволяет получать большие передаточные числа (до тысячи и больше) без применения многоступенчатых передач.
Эти передачи компактные и имеют малую массу. Переход от простых передач к планетарным позволяет во многих случаях снизить их массу в 4 раза и более.
Сателлиты в планетарной передаче расположены симметрично, а это снижает нагрузки на опоры (силы в передаче взаимно уравновешиваются), что приводит к снижению потерь и упрощает конструкцию опор.
Эти передачи работают с меньшим шумом, чем обычные зубчатые.
Основные недостатки: повышенные требования к точности изготовления и монтажа; резкое снижение КПД передачи с увеличением передаточного отношения.
|
|
Перечислите примеры возможного применения планетарных передач.
3.89. Передаточное отношение.
Для определения передаточного отношения планетарной передачи используется метод Виллиса — метод останова водила.
Передаточное отношение планетарной передачи (см. рис. 3.60)
(3.33)
где и — угловые скорости колес 1 и 2 относительно водила h ; Zi и z 2 — числа зубьев этих колес.
Для реальной планетарной передачи (колесо 2 закреплено неподвижно, колесо 1 — ведущее, водило h ведомое) при ω2 = 0 из формулы (3.36) получим
или
(3.34)
Для однорядной планетарной передачи I = 1,25 ÷ 8,0 для многоступенчатых i=30 ÷ 1000, для кинематических передач i1h ≥ 1600. Чем больше передаточное отношение планетарной передачи, тем меньше КПД
(л = 0,99 ÷ 0,1).
3.90. Расчет на контактную прочность зубьев планетарных передач проводится по аналогии с расчетом обыкновенных зубчатых передач отдельно для каждого зацепления (см. рис. 3.60): пара колес 1— g (внешнее зацепление) и g —2 — (внутреннее). Для таких передач достаточно рассчитать-только внешнее зацепление, так как модули и силы в зацеплениях одинаковые, а внутреннее зацепление прочнее внешнего.
|
|
Объясните, почему для планетарной передачи (см. рис. 3.60) достаточно рассчитать только внешнее зацепление.
3.91. Проектировочный расчет планетарной передачи на контактную ус талость активных поверхностей зубьев проводится по следующей формуле:
(3.35)
где dt — делительный диаметр ведущего звена (шестерни), мм; Kd = 78 МПа1/3 — вспомогательный коэффициент (рассматриваются стальные прямозубые колеса); T1 — вращающий момент на шестерне, Н • мм; KHβ — коэффициент нагрузки (см. табл. 3.4); Ω= 1,1 ÷ 1,3 — коэффициент, учитывающий неравномерность распределения нагрузки среди сателлитов; — передаточное отношение; [Ψbd]i = 0,75 — коэффициент длины зуба (ширины колеса); [σ]н — допускаемое контактное напряжение, МПа (см. шаг 3.45).
При расчете планетарных передач выбор числа зубьев колес зависит не только от передаточного отношения /, но и от условий собираемости передач. При этом сумма зубьев центральных колес должна быть кратной числу сателлитов (лучше 3).
Какие параметры определяются в проектировочном расчете на контактную прочность передач.
Дата добавления: 2019-09-13; просмотров: 333; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!