Развитие естествознания в XVII-XIX вв.



«Математические начала натуральной философии»

 

На рубеже XVII–XVIII вв. несовершенство математического аппарата являлось одним из основных препятствий для дальнейшего развития естественных наук. Приоритет в изобретении исчисления (анализа) бесконечно малых (дифференциального и интегрального исчисления) долгое время оспаривали друг у друга Исаак Ньютон и Готфрид Лейбниц.

Ньютон ввел понятия «флюэнт» и «флюксий». Флюэнта — текущая, переменная величина. Флюксия — производная функции-флюэнты по времени, то есть флюксия фиксирует скорость изменения флюэнт. Флюксии приблизительно пропорциональны приращениям флюэнт за равные промежутки времени. Был разработан способ вычисления флюксий (нахождения производных), основанный на способе разложения в бесконечные ряды. Обратная процедура интегрирования (путем развертывания выражений в бесконечные ряды), также была разработана Ньютоном. Попутно им решены многие задачи: нахождения минимума и максимума функции, определение кривизны и точек перегиба, вычисления площадей, замыкаемых кривыми.

Независимо от Ньютона к открытию дифференциального и интегрального исчислений пришел Лейбниц (1646-1716), разработавший более изящный вариант анализа, но в варианте Ньютона была более очевиден физический смысл метода счисления бесконечно малых. Лейбниц и Ньютон работали независимо, но Ньютон раньше завершил работу, а Лейбниц раньше опубликовал. В современной математике анализе обычно используется подход Лейбница, в том числе и его бесконечно малые числа, отдельное существование которых Ньютон не рассматривал.

Тем не менее, именно «Математические начала натуральной философии» явились фундаментальным трудом классического естествознания, основой механистической картины мира XVIII в. Ньютон формулировал свою цель следующим образом:

«Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обуславливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».[58]

Первая книга «Начал» посвящена теории тяготения и движения в поле центральных сил, вторая — учению о сопротивления среды. В третьей книге Ньютон изложил установленные законы движения планет, Луны, спутников Юпитера и Сатурна, дал динамическую интерпретацию законов, изложил «метод флюксий», показал, что сила, притягивающая к Земле камень, не отличается по своей природе от силы, удерживающей на орбите Луну, а ослабление притяжения связано только с увеличением расстояния.

После появления «Математических начал натуральной философии» природа стала восприниматься как отлаженный часовой механизм. Однако механицизм, как основополагающий принцип научного мировоззрения, оказался вполне совместимым с религиозными представлениями. Регулярность и простота основных принципов, которыми объяснялись все наблюдаемые явления, расценивались Ньютоном как доказательство бытия Бога:

«Столь изящнейшее соединение Солнца, планет и комет не могло произойти иначе как по намерению и во власти премудрого и могущественного существа...Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь бог Вседержитель».

Основной мотив апелляции к религии Ньютона сводится к так называемым «начальным условиям». Принципы механики и закон тяготения позволяют описать движения светил, если даны различные начальные условия: масса светила, начальная скорость и положение, положение орбиты на небесной сфере и т.д. Одних принципов для решения задачи, таким образом, недостаточно, нужны начальные данные, которые при данной постановке задачи могут быть произвольными.

 

Проблема инструментализации измерений

Точное измерение количественных характеристик исследуемых предметов является одним из важнейших моментов научного исследования. Уже в античной натурфилософии были предприняты попытки решения проблемы изменчивости человеческих ощущений: предлагались стандартные, не зависящие от субъективной оценки эталоны и инструменты, обеспечивавшие сравнение различных величин. Смена дня и ночи, движение звезд и само человеческое тело служили первыми, пусть и не всегда надежными, точками отсчета. Простейшие измерения производились рычажными весами, линейкой, циркулем, песочными и водяными часами еще в глубокой древности. XVII век стал свидетелем нескольких инструментальных прорывов: часы с маятником открыли путь к точному изменению времени. Барометр открыл неведомый ранее мир атмосферного давления. Появились и первые приборы для измерения температуры — термометры, однако поначалу они были довольно громоздки, и точность их была явно недостаточной. Например, известный своим опытом с Магдебургскими полушариями Отто фон Герике изготовил довольно сложный воздушно-спиртовой термометр несколько метров высотой (1672 г.), имевший шкалу с восемью значениями от «очень жарко» до «очень холодно».

В XVII–XVIII вв. ученые попытались найти способы более точного определения температуры. Принцип решения этой был вполне очевиден: сначала надо было взять несколько объектов, температура которых могла бы быть принята за эталон для установления «контрольных точек», с которыми можно было бы сравнить температуру изучаемого образца.

Исаак Ньютон установил два десятка контрольных точек: от холодного зимнего воздуха до тлеющих углей. Этот способ вскоре был им отвергнут, в виду очевидных затруднений в его практической реализации и недостаточной точности. Его следующая попытка оказалась более удачной. К этому времени было уже хорошо известно, что большинство тел заметно расширяется при нагревании. Ньютон измерил температурное расширение льняного масла между двумя из выбранных им контрольных точек — тающим снегом и температурой человеческого тела, после чего разделил отрезок, на который сместился уровень льняного масла в тонкой трубке, на двенадцать равных частей.

Одновременно с Ньютоном один из первых действующих термометров создал датский астроном Оле Рёмер, знаменитый своим измерением скорости света (1676). В качестве расширяющегося вещества он использовал крепкое красное вино. Контрольными точками ему служили температура смеси льда и соли в равных пропорциях (самая холодная субстанция, которую могли получить в лабораториях того времени) и кипящая вода. Шкала Рёмера была разделена на 60 равных ступеней, с нулем на температуре льда с солью.

Работы Рёмера продолжил Даниэль Габриэль Фаренгейт, посвятивший много времени изготовлению точных метеорологических инструментов, среди которых был ртутный термометр, созданный им в 1714 году. После ряда экспериментов Фаренгейт значительно увеличил дробность шкалы Рёмера. Контрольными точками были все тот же лед с солью (приблизительно 17,8 градусов Цельсия) и температуру собственного тела —— 37,8 градусов Цельсия.[59] Этот промежуток Фаренгейт разделил на 100 ступеней. Однако возможно самым замечательным достижением было то, что Фаренгейту удалось наладить производство серии термометров, показания которых сходились между собой.

Если Фаренгейт отталкивался от шкалы Рёмера, то линию Ньютона почти одновременно продолжили академик парижской Академии наук Рене Антуан Фершо де Реомюр (1683—1757) и профессор Академии наук и художеств в Санкт-Петербурге, также выходец из Франции, Николя Делиль (1688—1768).

В 1731 г. Фершо де Реомюр заинтересовался проблемами метеорологии и на основе тех же контрольных точек (замерзания и кипения воды) построил восьмидесятиградусную шкалу. Причины, по которым он выбрал именно восемьдесят ступеней, темны. Одно из предположений связано с алгоритмом градуировки и коэффициентом температурного расширения 80% водного раствора спирта (1 градус Реомюра соответствовал увеличению объема на одну тысячную, по сравнению с изначальным объемом спирта при температуре замерзания воды).

Андерс Цельсий долгое время занимался проблемой инструментализации измерений. Для определения звездных величин, например, он предложил использовать набор стандартных затемненных стекол. В термометре Цельсия (1742) контрольными точками являются температуры замерзания и кипения воды (при нормальном давлении), стоградусная шкала первоначально использовалась им в инвертированном виде.

В 1848 г. стоградусная шкала Цельсия была положена в основу термодинамической температурной шкалы, предложенной Уильямом Томсоном, лордом Кельвином. В качестве контрольной точки Томсон избрал гипотетическое состояние покоя молекул вещества (абсолютный термодинамический ноль). Точка замерзания воды оказалась в 273,15 градусах от абсолютного нуля. Аналогичная абсолютная термодинамическая шкала была разработана в 1859 г. Уильямом Джоном Маккворном Ранкиным на основе стоградусной шкалы Фаренгейта. Она использовалась в течение какого-то времени для технических расчетов в США, пока ее окончательно не вытеснила международно-признанная шкала лорда Кельвина.

 


Дата добавления: 2019-09-08; просмотров: 247; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!