Небольшой рассказ об электромобиле Tesla Model S от владельца



Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

ГОУ ВПО «Казанский Национальный Исследовательский Технологический Университет»

 

 

Контрольная работа

По дисциплине «Электрические машины»

 

                                                                                Выполнил:

                                                             Студент 8 факультета

                                                                      заочного отделения

                                                                                группы 8163-51

Сиразиева М.Т.

№ зачетной книжки 816721

 

Казань 2019 год


Содержание

 

Вводная часть про устройство двигателя автомобиля   3
Двигатель автомобиля Тесла   13
Небольшой рассказ об электромобиле Tesla Model S от владельца   15
Недостатки электромобилей на примере реальных случаев   19
Почему в России нет электромобилей?   22
Российский электродвигатель   25
Заключение 27
   
Список литературы   28

 


Вводная часть про устройство двигателя автомобиля

 

Электродвигатель – устройство, которое занимается преобразованием электроэнергии в механическую. Он работает, используя принцип электромагнитной индукции. В последнее время он все сильнее популяризируется на автомобильном рынке в качестве перспективного направления развития автопромышленности. Поэтому есть смысл подробнее ознакомиться с устройством электромобиля, его двигателя, за которым может быть будущее отрасли.

 

Электродвигатель включает в себя статор и ротор. Вращающееся магнитное поле в статоре действует на обмотку ротора и наводит в нём ток индукции, возникает вращающий момент, который приводит в движение ротор. Электроэнергия, поступающая на обмотки мотора, преобразуется в механическую энергию вращения.

Благодаря развитию технологии электродвигатели нашли применение в разных отраслях, например, автомобилестроении. Причем они способны использоваться либо отдельно, либо совместно с двигателем внутреннего сгорания (ДВС). Последний вариант – гибридные авто.

От электродвигателей, применяемых на производствах, агрегат для авто отличается малыми габаритами, но повышенной мощностью. К тому же современные разработки все больше отдаляют двигатели для автомобилей от иных подобных устройств. Характеристиками электромобилей являются не только показатели мощности, крутящего момента, но и частота вращения, ток и напряжение. Поскольку от этих данных зависит передвижение и обслуживание авто.

Чтобы лучше разобраться в многообразии, которое нам дарит авторынок, стоит рассмотреть существующие виды электродвигателей для электромобилей.

Их можно условно классифицировать по типу тока:

- устройства переменного тока;

- конструкции постоянного тока;

- решения универсального образца (способны функционировать от постоянного и переменного тока).

Электродвигатели переменного тока делятся на группы:

асинхронные – скорость вращения магнитного поля статора выше скорости вращения ротора;

синхронные – частоты вращения магнитного поля статора и ротора совпадают.

С учетом используемого количества фаз, электрические устройства разделяют на: одно-, двух-, трехфазные.

 

Если привести реальные образцы, используемые известными автопроизводителями, то хороший пример применения трехфазного агрегата асинхронного типа – Volt от Chevrolet. Он является гибридным автомобилем. Пример трехфазного синхронного двигателя — i-MiEV от Mitsubishi. А этот автомобиль является исключительно электрическим.

Следует отметить, что у разных производителей разные двигатели, отличающиеся массой, мощностью, габаритами и прочими параметрами.

Есть еще одна классификация – по конструкции щеточно-коллекторного узла. Такие агрегаты бывают:

Бесколлекторными. Представляют собой замкнутую систему, в которую входят: преобразователь координат, инвертор и извещатель положения.


Коллекторными. Щеточно-коллекторный узел играет роль в такой конструкции одновременно и извещателя положения ротора, и переключателя тока в обмотках. В основном используется ток постоянной частоты.

 

В конструкциях электромобилей зачастую задействуются коллекторные моторы, хотя есть примеры и с иными моделями. Как вариант — автомобиль «Санрейсер», в котором установлен как раз бесколлекторный двигатель от компании General Motors. При массе 3,6 кг его КПД составляет 92%.

Нельзя не отметить еще один тип двигателя, который используется в некоторых современных моделях авто. Это система мотор-колесо. Пример — спорт-кар Volage. В такой конструкции предусмотрена возможность регенерации энергии торможения. Для этого используется тяговый двигатель Active Wheel. Он весит всего 7 кг, что позволяет добиться приемлемой массы колеса – 11 кг.


Самой распространенной сегодня конструкцией является решение с питанием от аккумуляторной батареи. Она нуждается в регулярной зарядке, способной реализоваться за счет внешних источников, генератора в конструкции и рекуперации энергии торможения. Генератор действует от ДВС, поэтому такая схема работы уже не относится к чисто электрическим. Подобные машины называют гибридными.

Выделим достоинства электрических агрегатов:

- высокий коэффициент полезного действия – до 95 процентов;

- компактность, малый вес;

- простота использования;

- экологичность;

- долговечность;

- создается максимальный показатель крутящего момента на любой отметке скорости;

- воздушное охлаждение;

- способны функционировать в режиме генератора;

- не нужна коробка передач;

- возможность рекуперации энергии торможения.

В качестве примера удачной разработки модели с высокими характеристиками можно привести мотор от Yasa Motors. Инженеры компании создали агрегат, который при весе 25 кг способен выдавать до 650 Нм крутящего момента.

 

 

Что касается недостатков непосредственно электродвигателя, то их нет. Больше вопросов вызывает питание агрегата, что, собственно, и тормозит распространение, широкое использование технологии. Поэтому на данный момент большей популярностью пользуются гибридные авто, нежели электромобили. Благодаря такой схеме увеличивается запас хода, позволительно использовать менее мощные и дорогостоящие аккумуляторные батареи.

Если сравнивать электромобиль с авто, где используется ДВС, он характеризуется более простой схемой, минимальным числом движущихся элементов. Следовательно, такое решение является более надежным.

Главные составляющие электромобиля:

- непосредственно электродвигатель;

- питающая аккумуляторная батарея разной емкости, которая связана с мощностью мотора;

- упрощенная трансмиссия;

- инвертор;

- зарядное устройство на борту;

- электронная система управления элементами конструкции;

- преобразователь.

Питание мотора в этой схеме организовывает, конечно же, тяговая аккумуляторная батарея. Зачастую задействуется литий-ионный тип, включающий в себя несколько модулей, подключенных последовательно. На выходе аккумулятора формируется напряжение от 300 (В) постоянного тока. Это значение определяется моделью авто. Современные образцы способны создавать и 700 В. Пример – автомобили Lola-Drayson, разработанные для гонок. Они оснащаются батареями напряжением 700 (В) и емкостью 60 кВт?ч.

Для корректного взаимодействия емкость батареи подбирается с учетом мощности двигателя. Этот показатель в подавляющем большинстве конструкций составляет от 15 до 200 (кВт). Если сравнить электрический двигатель с ДВС, то у первого КПД составляет 95%, а у другого – 25%. Разница существенна.

Имеются примеры в автомобилестроении, когда в конструкции используется несколько агрегатов. Они могут приводить в движение определенные колеса. Такой принцип организации позволяет увеличить тяговую мощность авто. Двигатель, интегрированный в колесо, имеет массу преимуществ, однако такое устройство тягового электродвигателя характеризуется ухудшенной управляемостью транспортного средства. Поэтому разработчики продолжают вести активную деятельность в этом направлении.

Что касается трансмиссии, то у электромобиля она имеет упрощенный вид. Многие конструкции оснащены одноступенчатым редуктором. Благодаря инвертору происходит преобразование высокого напряжения постоянного тока батареи. За счет наличия в конструкции бортового зарядного устройства гарантируется зарядка аккумулятора от электросети бытового назначения.

Обеспечением зарядки дополнительной батареи на 12 (В) занимается преобразователь. Эта батарея задействуется в качестве питающего элемента различных устройств транспортного средства:

- аудиосистемы;

- климат-контроля;

- освещения;

- отопительной системы;

- прочих элементов.

Система управления организовывает такие процессы:

- мониторинг используемой энергии;

- управление рекуперацией энергии торможения;

- оценка уровня заряда;

- управление динамикой движения;

- обеспечение необходимого режима перемещения транспортного средства;

- регулировка тяги;

- управление напряжением.

Система объединяет блок управления, датчики и прочие элементы других систем авто. Благодаря датчикам оценивается уровень давления в тормозной системе, разряда батареи, а также положение селектора переключения передач, тормозной педали и педали газа. По данным этих устройств обеспечивается оптимальное перемещение электромобиля с учетом текущих условий. На панели приборов традиционно отображаются основные показатели функционирования транспортного средства.

Внешне электромобиль не имеет отличий от традиционного автомобиля с ДВС, однако основные расхождения находятся в области эксплуатации: высокая стоимость, необходимость длительной зарядки, ограниченный ход. Поэтому устройство электромобиля имеет определенные расхождения с составом традиционного транспортного средства.

Высокая стоимость авто формируется в основном из-за цены на аккумуляторы, которые еще и имеют небольшой срок службы – до 7 лет. Это вынуждает специалистов искать новые решения для совершенствования технологии: литий — полимерные батареи, суперконденсаторы, топливные составляющие и прочие.

Затраты на содержание электромобиля зачастую ниже, чем авто с ДВС, особенно в тех государствах, где стоимость электроэнергии низкая.

Слабым местом электромобиля является также невысокий уровень автономного функционирования, вызванный коротким километражем без подзарядки. Этот параметр определяется многими факторами:

- стилем вождения;

- условиями и скоростью передвижения;

- емкостью используемых аккумуляторов;

- уровнем использования дополнительного оборудования.

К примеру, при скорости 80 км/ч средний показатель дальности передвижения электрического транспортного средства составит около 140 км. Если же повысить скорость до 120 км/ч, этот показатель резко упадет до 80 км. Благодаря внедрению систем рекуперативного торможения степень автономности может повышаться до показателя в 300 км и более.

Как отмечалось, зарядка аккумулятора требует много времени, поэтому этот недостаток решается несколькими подходами:

- замена батареи на заряженную (услугу могут предоставлять на специальных станциях);

- ускоренная зарядка – за полчаса может зарядиться 80% емкости аккумулятора;

- нормальный режим – продолжительность зарядки может составить 8 часов.

Применение гибридных автомобилей не только имеет свои преимущества, например, экологические, но и преследует определенные цели действующих игроков автомобильного рынка. Компании намерены сохранить налаженное конвейерное производство двигателей внутреннего сгорания. А постоянное ужесточение норм выброса вредных веществ – лишнее тому подтверждение.

По сути, гибридные системы подразумевают использование электродвигателя как дополнительного элемента, который способствует повышению мощности и экономии топлива. Ведь все подобные машины начинают движение именно благодаря ДВС.

Гибридные системы условно можно разделить на подвиды:

Интегрированное содействие мотору.

Интегрированный генератор стартера. Система, как и предыдущая, позволяет начинать движение машине, только в этом случае используется меньший электродвигатель.

Система остановки/старта двигателя. Происходит отключение мотора, когда его мощность не используется, а затем он запускается моментально, как только это необходимо.

 

Различают также три вида «гибридов»:

Параллельный. В этом случае батареи передают энергию электродвигателю, а бак – топливо для ДВС. Оба агрегата способны создать условия для перемещения транспортного средства.

Последовательный. ДВС поворачивает генератор, который может или завести электродвигатель, или зарядить аккумуляторы.

 

Последовательно-параллельная. ДВС, электродвигатель и генератор соединены с колёсами через планетарный редуктор.

Большинство существующих сейчас гибридных автомобилей относятся к параллельным. Хорошим решением является транспортное средство с подзарядкой. Оно открывает новые эксплуатационные возможности, нивелируя недостаток ограниченности пробега. При исчерпании заряда аккумулятора в работу вступает ДВС малой мощности.

Гибридная система существенно снижает уровень выводимых газов и увеличивает продуктивность расхода топлива, что особо актуально в условиях крупного населенного пункта. А рекуперативная система аккумулирует энергию.

Управление гибридным транспортным средством похоже на управление обычным автомобилем с автоматической коробкой передач. Только в этом случае обеспечивается низкий уровень шума, лучшая управляемость и повышенная мощность. При этом не нужно специально подзаряжать аккумуляторную батарею, это происходит при работе автомобиля.

Судя по текущим тенденциям, мировые лидеры автомобильной промышленности, политики и другие влиятельные лица всерьез взялись за то, чтобы развивать отрасль производства электрических автомобилей. Это видно по регулярно внедряемым нормам, которые постоянно повышают планку по выбросу максимального уровня вредных газов в атмосферу, и по мощной рекламной кампании, которая развернулась в медиапространстве в поддержку такого типа транспортных средств. В развитых странах с каждым годом растет количество заправочных станций, обеспечивающих зарядку электромобилей.

Поэтому открываются большие возможности инженерам для развития отрасли. И для этого есть два основных направления – адаптировать серийные автотранспортные средства или вести разработку новых моделей. Конечно, менее затратным мероприятием является усовершенствование существующих моделей.

Как раз европейские специалисты и занимаются улучшением нынешних гибридных двигателей, в то время как японские компании занялись совершенствованием обычного двигателя. Им удалось увеличить степень сжатия. При этом состав топлива остался неизменным.

В свою очередь, немецкие разработчики установили небывалый рекорд. Созданному электромобилю удалось проехать без подзарядки целых 600 км. Для автомобилей с ДВС это не показатель, однако электромобили могут похвастаться теперь и такими возможностями.

Дело в том, что даже Tesla, ведущий участник рынка, ещё не создал легкий аккумулятор, который смог вытянуть это расстояние. А в этом случае разработчикам удалось достичь показателя в 600 км.

Автомобиль проехал расстояние между двумя немецкими городами – Мюнхеном и Берлином. Его средняя скорость передвижения по трассе составила около 90 км/ч. Установление подобного рекорда стало возможным благодаря плодотворной работе предприятия DBM Energy, которое в тесном сотрудничестве с Lekker Energie создало такое решение.

В электромобиле была установлена аккумуляторная батарея емкостью 115 кВт/ч. Благодаря этому транспортное средство способно увеличивать мощность до 55 кВт, что отвечает приблизительно объему 1,4 Л для бензинового двигателя. Эффективность такой батареи доказывает установка в погрузчик, который способен увеличить время своей работы в четыре раза, если сравнивать действия с обычным аккумулятором. Именно этот емкостный агрегат был установлен на немецкий автомобиль Audi A2.

Может сложиться впечатление, что автомобиль «пустой», однако это не так. Организаторы эксперимента оснастили его всем необходимым: кондиционером, усилителем руля, аудиосистемами, системами безопасности и даже подогревом сидений. Поэтому потребление энергии, кроме перемещения, требовалось для выполнения и других функций.

Как стало известно, подобная технология находится на рассмотрении министерства экономики Германии, поэтому вполне возможно, что уже в скором времени эта отрасль получит новый толчок. Уже есть планы, по которым к 2020 году правительство страны намеревается достичь показателя в один миллион электрических автомобилей на европейских дорогах. Причем это не только транспортные средства личного пользования, но и другого назначения.

К тому же один из менеджеров компании Lekker Energie сообщил, что используемый аккумулятор на автомобиле А2 способен обеспечить общий пробег на уровне 500 тысяч километров.

Есть и еще один рекорд в этом направлении, поставленный Japan Electric Vehicle Club. Однако он касается чистого эксперимента. Это значит, что для повседневного использования такой электрокар не приспособлен. В результате японцам удалось побить рекорд – 1 тыс. км без подзарядки.

Какие бы разработки не велись в этой области, они сводятся к тому, что их должны поддержать гиганты автомобильной промышленности. Только им под силу внедрить достойное новшество, распространяя его по всему миру, создавая необходимую инфраструктуру, сервис и прочие необходимые средства. Все это требует больших затрат, поэтому предложенная идея может быть воплощена в жизнь, если расчеты по ее реализации дадут действительно существенную прибыль и установят новую планку стандартов на мировом рынке.

Тем не менее, учитывая текущее положение вещей, вряд ли стоит предполагать, что уже очень быстро электромобили займут свою большую нишу в автомобилестроении. И важный фактор, притормаживающий прогресс - психология человека. Очень непросто переубедить автомобилистов пересесть с бензиновых и дизельных автомобилей на электрические. Это особенно сложно сделать тем, кто занимается автогонками или является любителем динамичной езды.

Но тенденция к изменению отношения к такому явлению, как электрокар, уже проявляется. Сегодня все больше подобных автомобилей можно встретить на дорогах не только Европы, но и России. Пусть их еще немного, но их дополняют бесплатные зарядные станции в некоторых странах, позволяющие перемещаться на большие расстояния. Поэтому электрический транспорт постепенно становится естественным участником дорожного движения, закладывая фундамент новой эры машиностроения.


 

Двигатель автомобиля Тесла

 

Никола Тесла - легендарный создатель в области электро- и радиотехнике, создатель переменного тока. Все электронное оборудование, которое мы используем, напрямую или косвенно связано с ним. В его честь была открыта компания по производству автомобилей, которые ездят на электричестве. Никола Тесла не интересовался патентами. Он просто хотел сделать что-то хорошее для общества. Похоже, что автопроизводитель идет по стопам этого ученого. Компания не будет судиться, если вы добросовестно используете ее инновации.

Компанию зарегистрировали в 2003 году Мартин Эберхард и Марк Тарпеннинг. Соучредителями выступали Илон Маск, Джеффри Брайн Штробель и Иан Райт. Это было в начале 2000-х. Большие концерны, как GM, заявили, что потратили около миллиарда долларов на разработку электромобилей, но потерпели неудачу. Марк Тарпеннинг решил продолжать делать что-то хорошее, что лидерам автомобильной промышленности казалось невозможным. 23 апреля 2003 года он купил доменное имя Tesla Motors и начал новую эру.

 Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.

Это первые автомобили в мире, которые умеют учиться. Функции Автопилота успешно управляют автомобилем на шоссе без вмешательства водителя. Автономное управление делает дороги безопаснее. Сервис автопилотирования постоянно учится и совершенствуется. Он использует машинное обучение. Если один узнает что-то интересное, то информация распространится на все автомобили в сети. Google, Facebook, а теперь Tesla полагаются на машинное обучение, чтобы улучшить свои продукты.

Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.

 

Технические характеристики силового агрегата электромобиля Tesla:

 

Наименование Характеристика
Производитель Tesla
Тип Трёхфазный асихронный двигатель
Мощность 225, 270 или 310 кВт
Крутящий момент 430, 440 или 600 Н*м
Максимальная скорость 201 (первое поколение) 250 (второе поколение) км/час
Разгон до 100 км/час От 2,7 (модификация P100D)
Тип аккумулятора Литий-ионный
Запас хода От 370 до 632 км
Время зарядки 8 ч

 

Национальное управление безопасностью движения на трассах (NHTSA) присвоило Model S 5 звезд в рейтинге во всех категориях.

Примерно 1% протестированных федеральным правительством машин набирает 5 звезд по всем направлениям. Tesla настолько совершенна, что NHTSA не хватает шкалы оценки для правильного рейтинга — 5,4 звезды. Model S даже сломала тестовую установку. В ее пользу играют низкий центр тяжести из-за блока аккумуляторов и отсутствие движка под капотом. Model S и X поставляются с защитой от биологического оружия

Электромобили Tesla имеют совершенную систему фильтрации воздуха. Соучредитель Google, Ларри Пейдж надоумил Маска сделать ее. В 2015 году вместе с Model X компания показала новый воздушный фильтр HEPA. HEPA в 10 раз больше, чем обычный автомобильный фильтр, и «в 100 раз эффективнее, чем премиальные фильтры». Он удаляет «не менее 99,97% тонкодисперсных частиц, … газообразные загрязнители, споры плесени, вирусы, бактерии и пыльцу». Маск сказал, что электромобили модели S и X могут противостоять апокалипсису и любому биологическому оружию.


 

Небольшой рассказ об электромобиле Tesla Model S от владельца

 

Tesla Model S - пятидверный электромобиль производства американской компании Tesla Motors. Прототип был впервые показан на Франкфуртском автосалоне в 2009 году. Поставки автомобиля в США начались в июне 2012 года. Компания называет свой автомобиль с таким типом кузова "фастбэк", который нам известен как "хэтчбэк".

Цены на Model S начинаются от 62,4 тысячи долларов и доходят до 87,4 тысячи долларов (в США). Самый дорогой вариант — это автомобиль с запасом хода почти в 425 километров, способный набирать «сотню» за 4,2 секунды.

По итогам первого квартала 2013 года в США было продано 4750 экземпляров Tesla Model S. Таким образом, модель стала самым продаваемым люксовым седаном, опередив, в частности, Mercedes-Benz S-класса и BMW 7-й серии. Прорыв произошел и в Европе. В Норвегии за первые две недели сентября 2013 Tesla Model S - самый продаваемый автомобиль (322 шт), обошедший Volkswagen Golf (256шт).

Под капотом нет всего того, что мы привыкли видеть в машине с двигателем внутреннего сгорания. Здесь вместо него багажник. Сзади то же самое. Багажник довольно объемный, при желании здесь можно установить детские кресла, обращенные лицом к стеклу.

Согласно US Environmental Protection Agency (EPA) заряда литий-ионного аккумулятора емкостью 85 кВт⋅ч хватает на 426 км, что позволяет Model S преодолевать наибольшую дистанцию из доступных на рынке электромобилей. Изначально в планах Tesla было начать в 2013 году производство автомобилей с аккумуляторами емкостью 60 кВт⋅ч (335 км) и 40 кВт⋅ч (260 км), однако из-за малого спроса от модели на 40 кВт⋅ч решено было отказаться. Базовая модель S использует жидкостное охлаждение двигателя переменного тока, который производит 362 лошадиных силы.

В основе аккумулятора автомобиля (их 16 блоков) находится около 7 тысяч пальчиковых батареек, уложенных с особым распределением положительных и отрицательных контактов, который хранится в секрете. В июне 2013 года компания продемонстрировала возможность перезарядки Model S путём автоматической замены батареи. В ходе демонстрации было показано, что процедура замены занимает примерно 90 секунд, что более чем вдвое быстрее заправки полного бака аналогичного бензинового автомобиля. По заявлению президента компании Илона Маска, «медленная» (20-30 минут) зарядка батареи Model S на заправочных станциях компании останется бесплатной, в то время как быстрая замена обойдётся владельцу машины в сумму порядка 60-80 долларов, что примерно соответствует стоимости полного бака бензина.

Внутри машины вместо привычных приборов на панели жк монитор, на котором все нужные функциональные кнопки и информация о рабочем состоянии автомобиля.

В момент нахождения на зарядке вместо спидометра отражается информация о том, насколько заряжен электромобиль, и на сколько километров хватит его хода. Вместо тахометра на дисплее показываются данные амперметра. Сзади довольно просторно. Окна на двери без рамок. На поворотнике - символ компании Tesla Motors, лаконичный и красивый. за лого скрывается нечто большее, чем просто первая буква названия. Интересный факт - хоть символ выглядит как T, он представляет продукты компании. Логотип Tesla показывает поперечное сечение электродвигателя.

Напоследок расскажу о том, как заряжается батарея электромобиля словами его владельца the-bpah

Как заряжать теслу? Простой ответ - легко и просто. Простая математика и базовый курс электротехники, 8й класс средней школы.

Помним, что мощность выражается в киловаттах и равна силе тока в амперах, помноженной на напряжение в вольтах.

А емкость батарейки теслы равна либо 60 КВт-ч, либо 85 КВт-ч, в зависимости от модификации.

И еще помним, что штатное зарядное устройство работает в диапазоне 100-240V 50-60Hz. Проблем с российскими электросетями нет никаких.

Главное три фазы не подать :) но абстрактный имярек без бойца-электрика с этой задачей не справится, а неумные бойцы-электрики в природе встречаются крайне редко, естественный отбор все дела.

 

Итак поехали. Куча опций.

 

Вариант 1. Всегда и везде.

Штатный блок питания, обычная розетка 220В.

12 ампер, 220 вольт = примерно 2.5КВт.

Полная зарядка батареи - полтора суток (указано для большой батарейки 85, для маленькой указанное время делим на полтора).

Важно иметь работающую "землю" на розетке, без этого не работает.

Техническая сложность - все разъемы зарядного устройства идут по заокеанским стандартам.

Решение - либо переходник с американской розетки на российскую (китайские переходники для айфонов не годятся, они хлипкие ппц, пускать по ним 12А вдолгую просто страшно), либо банальная скрутка. Цепляем к американским разъемам на скрутку отрезанный от полотенцесушителя или микроволновки кабель с вилкой. Работает.

 

Вариант 2. Дешево и сердито.

 

Второй разъем зарядного устройства. Стандарт NEMA 14-50, американская силовая розетка.

Берем американскую розетку стандарта NEMA 14-50 (важно озаботиться купить заранее, лучше сразу десяток про запас), зовем бойца-электрика. Просим или требуем выдать 50 ампер на одной фазе.

В зависимости от степени мотивации и мотивации бойца-электрика и возможно бойца-энергетика, получаем или 25А, или 32А, или 40А.

Дальше боец-электрик ставит на стену заранее запасенную американскую розетку и подключает ее. Бойцы-электрики этому обучены, коммутация проблем не вызывает (цепляются ноль-земля-фаза, нейтраль не нужна). Схемы коммутации ищем в википедии.

Итог - время полной зарядки сокращается до 18/14/11 часов.

Уже намного лучше, за ночь батарейка зарядится.

 

Как выглядит процесс зарядки по вариантам 1 и 2.

Открыл багажник. Вынул зарядное устройство. Вставил в розетку, дождался когда побегут зеленые огоньки. Вставил в машину, дождался пока замигает зеленым. Пошел спать. Минута-полторы на все про все.

 

Не уверен в возможности уличной установки. Визуально на IP44 не очень похоже, реально - надо читать спецификации. Варианты выкрутиться точно есть.

 

Вариант 3. Wall connector.

 

Процесс организации практически полностью аналогичен варианту 2.

Отличия:

- бойцам-электрикам и бойцам ставится боевая задача обеспечить 80 ампер на одной фазе. Возможно, бойцы с этой задачей не справятся, 80А это много. Тогда можно ограничиться 40А.

- вместо розетки NEMA 14-50 на стену вешается настенное зарядное устройство.

 

Процедура зарядки существенно упрощается. Снял со стены штекер, воткнул в машину, пошел спать. Секунд 15 и никаких проводов под ногами.

Время полной зарядки (если удастся организовать 80А) сокращается до 5-6 часов.

Уличное исполнение - да. Защита IP44.

Важный момент - убедиться при заказе что тесла умеет заряжаться током 80А. Если не умеет - вопрос потенциально можно решить заменой блока зарядки в тесле.

Но он дорогущий, проще купить не эту а другую теслу, где блок стоит штатно.

 

Для обособленно живущих замкадышей также доступна опция зарядки от однофазного дизеля. Особенностей абсолютно никаких, с коммутацией легко справится боец-электрик.

 

Пока это всё что есть.

Пока в России нет ни суперчарджеров (110КВт мощность, заряжает за 40 минут) ни станций battery swap (меняют батарейку на новую заряженную за 2 минуты).

Все будет. Год-два максимум.

Никаких технических сложностей нет, особенно в суперчарджерах. Вопрос ровно в том когда Илон Маск вспомнит про poor Russia. Скоро вспомнит, скоро :)

 

Что еще надо учитывать.

Что реальный расход электричества, в режиме уличных гонок (по-другому я на ней пока не езжу) в 1.5 раза выше номинального. Запас соответственно не 400 км, а 250-300.

Что реальный дневной пробег типового внутримкпадыша - в пределах 100-150км. Замкадыши ездят 150-200км. Соответственно каждый день нужно заряжать не всю батарею а половинку или 2/3. И не 10 часов, а 5-6-7.

 

Это всё. Больше никаких особенностей и откровений.

Просто каждый вечер ставим на зарядку айфон, айпад, макбук и теслу.


 


Дата добавления: 2019-09-02; просмотров: 192; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!