Неметаллические проводящие материалы



Наряду с металлами и металлическими сплавами в качестве резистивных, контактных и токопроводящих элементов достаточно широко используются различные композиционные материалы, некоторые окислы и проводящие модификации углерода. Как правило, эти материалы имеют узкоспециализированное назначение.

Углеродистые материалы. Среди твердых неметаллических проводников наиболее широкое применение в электротехнике получил графит — одна из аллотропных форм чистого углерода. Наряду с малым удельным сопротивлением ценными свойствами графита являются значительная теплопроводность, стойкость ко многим химически агрессивным средам, высокая нагревостойкость, легкость механической обработки. Для производства электроугольных изделий используют природный графит, антрацит и пиролитический углерод.

Природный графит представляет собой крупнокристаллический материал с очень высокой температурой плавления (порядка 3900°С). При свободном доступе кислорода и высокой температуре он окисляется, образуя газообразные окислы СО и СО2.

Пиролитический углерод получают путем термического разложения паров углеводородов в вакууме или в среде инертного газа (пиролиз). В качестве веществ, подвергаемых пиролизу, обычно выбирают соединения метанового ряда. Для получения плотной структуры требуется температура пиролиза не менее 900°С. Пленки пиролитического углерода широко применяются  для получения линейных резисторов поверхностного типа.

Мелкодисперсной разновидностью углерода является сажа. Ее получают как продукт неполного сгорания или термического разложения углеродсодержащих веществ. Будучи введенными в связующее вещество, сажи проявляют склонность к структурообразованиям.

Производство большинства угольных изделий заключается в из­мельчении углеродистого сырья в порошок, смешении его со связую­щими веществами, формовании и обжиге, после которого изделия приобретают достаточную механическую прочность и твердость, допускают механическую обработку.

Графит широко используется в технологии полупроводниковых материалов для изготовления разного рода нагревателей и экранов, лодочек, тиглей, кассет и т. п. В вакууме или защитных газовых средах изделия из графита могут эксплуатироваться при температурах до 2500°С.

Особую модификацию графита представляет стеклоуглерод, получаемый полимеризацией органических полимерных смол типа бакелита , проводимой в атмосфере нейтральных газов в течение длительного времени. Изготавливаемые изделия имеют блестящую поверхность, стеклоподобный вид и раковистый излом. Стеклоуглерод отличается от обычного графита повышенной химической стойкостью.

Композиционные проводящие материалы. Композиционные материалы представляют собой механическую смесь проводящего наполнителя с диэлектрической связкой. Путем изменения состава и характера распределения компонентов можно в достаточно широких пределах управлять электрическими свойствами таких материалов. Особенностью всех композиционных материалов является частотная зависимость проводимости и старение при длительной нагрузке. В ряде случаев заметно выражена нелинейность электрических свойств.

В качестве компонентов проводящей фазы используют металлы, графит, сажу, некоторые окислы и карбиды. Функции связующего вещества могут выполнять как органические, так и неорганические ди­электрики.

Среди многообразия комбинированных проводящих материалов наибольшего внимания заслуживают контактолы и керметы.

Контактолы, используемые в качестве токопроводящих клеев, красок, покрытий и эмалей, представляют собой маловязкие либо пастообразные полимерные композиции. В качестве связующего вещества в них используют различные синтетические смолы (эпоксидные, фенол-формальдегидные, кремнийорганические и др.), а токопроводящим наполнителем являются мелкодисперсные порошки металлов (серебра, никеля, палладия). Необходимая вязкость контактолов перед их нанесением на поверхность обеспечивается введением растворителей (ацетон, спирт и т. п.). Большую роль в формировании контактов между частницами металлов в композиции играют внутренние напряжения, возникающие при отвержении в результате усадки из-за улетучивания растворителя и полимеризации связующего вещества. Внутренние напряжения подводят к появлению контактного давления между частицами наполнителя, что обусловливает резкое уменьшение контактных сопротивлений.

Контактолы используют для получения контактов между металлами, металлами и полупроводниками, создания электродов на диэлектриках, экранирования помещений и приборов от помех, для токопроводящих коммуникаций на диэлектрических подложках, в гибких волноводах и других изделиях  электронной промышленности.

Керметами называют металлодиэлектрические композиции с неорганическим связующим. Они предназначены для изготовления тонкопленочных резисторов. Существенным преимуществом: керметных пленок является возможность варьирования их удельным сопротивле­нием в широких пределах. Наибольшее распространение получила микрокомпозиция Cr — SiO, тонкие пленки которой изготавливают методом термического испарения и конденсации в вакууме ее последующей термообработкой для стабилизации свойств. При термообработке за счет взаимодействия компонентов происходит вытеснение окисной прослойки между зернами с образованием фазы Cr3Si. В результате сопротивление изоляционных прослоек между зернами заменяется сопротивлением  контактирования.

В толстопленочных микросхемах используют резисторы, получаемые на основе композиции стекла с палладием и серебром-. Для этой цели стекло размалывают в порошок до размера зерен 3-55 мкм, смешивают с порошком серебра и палладия, вспомогательной органической связкой и растворителем. Получаемую пасту наносят на: керамическую подложку и спекают в обычной атмосфере. Удельное сопротивление пленок зависит от процентного содержания проводящих компонентов и режима спекания.

Проводящие материалы на основе окислов. Подавляющее большинство чистых окислов металлов в нормальных условиях является хорошими диэлектриками. Однако при неполном окислении (при нарушении стехиометрического состава за счет образования кислородных вакансий), а также при введении некоторых примесей проводимость окислов резко повышается. Такие материалы можно использовать и качестве контактных и резистивных слоев. Наибольший практический, интерес в этом плане представляет двуокись олова. В радиоэлектронике она используется преимущественно в виде тонких пленок. Такие пленки получают различными способами: термическим вакуумным испарением и конденсацией с последующим отжигом на воздухе, окислением пленок металлического олова, осажденного на диэлектрическую подложку, реактивным катодным или ионно-плазменным распылением и др. Окисные пленки SnO2 отличаются очень сильным сцеплением с керамической или стеклянной подложкой. Прочность сцепления достигает 20 МПа, что намного больше, чем у металлических пленок. Удельное сопротивление пленок  зависит от степени нарушения стехиометрического состава и может составлять 10-5Ом×м. Нагрев пленок из SnO2 выше 240°С приводит к необратимому изменению сопротивления в результате более полного окисления. Вместе с тем пленки устойчивы ко многим химическим средам — разрушаются только плавиковой кислотой и кипящей щелочью. Тонкие слои двуокиси олова обладают ценным оптическим свойством — высокой прозрачностью в видимой и инфракрасной частях спектра. Собственное поглощение пленок SnO2 толщиной до 2 мкм в видимой части спектра не превышает 3%.

Сочетание высокой оптической прозрачности и повышенной электрической проводимости пленок двуокиси олова обусловливает применение их в качестве проводящих покрытий на внутренних стенках стеклянных баллонов электровакуумных приборов, электродов электролюминесцентных конденсаторов и жидкокристаллических индикаторов, передающих телевизионных трубок, преобразователей и усилителей изображения и др.

Кроме двуокиси олова, высокой электрической проводимостью и прозрачностью в видимой области спектра обладают пленки окиси индия In2О3. Они имеют аналогичное применение.

Сверхпроводящие материалы.

Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 °К В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, что сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото, медь, серебро. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает при Т » 0 °К достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит  переход  таких металлов в сверхпроводящее состояние.

Кроме чистых металлов сверхпроводимостью обладают многие интерметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия (табл. 3.1). Некоторые из них позво­ляют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент — жидкий водород.

 

Табл.3.7.1 Основные свойства сверхпроводящих сплавов

Материал Т , °К Отличительные особенности
14,8 0,6 21 1,6 Удовлетворительные механические свойства
17,0 0,62 23,4 2 То же
18,3 0,54 24,5 2,4 Высокая плотность тока, технологичность
20,3 - 34,0 - Высокая температура перехода, технологичность
21-24,3 - 37,0 Наиболее высокая температура перехода

 

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную  концентрацию дефектов кристаллической  решетки.  Например,  у чистого  олова  Тсв = 3,7 °К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 °К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках и диэлектриках препятствует малая концентрация свободных электронов. Однако в материалах с. большой диэлектрической проницаемостью силы кулоновского отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологическими трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллидов  применяется бронзовый метод  (или метод твердофазной диффузии), освоенный  промышленностью.  По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово из бронзы диффундирует в ниобий, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb3Sn. Такой жгут может изгибаться, но пленки остаются целыми.

Применение сверхпроводников. Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не требуется внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Считается перспективным использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидродинамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5—7 раз  масса и габаритные размеры машин при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Значительное внимание в разных странах уделяется разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек Для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать

Сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому

электрическому сопротивлению, очень высокой добротностью. Принцип механического выталкивания сверхпроводников из магнитного поля положен в основу создания сверхскоростного железнодорожного транспорта на «магнитной подушке».

Нарушение сверхпроводимости материала внешним магнитным полем используется в конструкции прибора, который называют криотроном. На рис. 3.7.112 схематически изображено устройство пленочного криотрона. В условиях Т < Тсе пленка из олова остается сверхпроводящей до тех пор, пока магнитное поле, создаваемое током, пропущенным через свинцовый сверхпроводник, не превысит критического для олова значения. На криотронных элементах можно выполнить ячейки вычислительных машин. Из криотронов можно собрать любую схему памяти или переключения. Два состояния с нулевым и конечным сопротивлениями естественно отождествить с позициями 0 и 1 в двоичной системе счисления. Достоинствами ячеек на пленочных криотронах являются высокое быстродействие, малые потери и чрезвычайная компактность.

Широкие перспективы применения сверхпроводников открывает измерительная техника. Дополняя возможности имеющихся измерительных средств, сверхпроводящие элементы позволяют регистрировать очень тонкие физические эффекты, измерять с высокой точностью и обрабатывать большое количество информации.

Уже сейчас на основе сверхпроводимости созданы высокочувствительные болометры для регистрации ИК-излучения, магнитометры для измерения слабых магнитных потоков, индикаторы сверхмалых на­пряжений и токов. Круг этих приборов непрерывно расширяется.

 

 


Дата добавления: 2019-07-15; просмотров: 894; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!