Влияние кривизны Земли на измеряемые расстояния и высоты точек



Задачи геодезии

В геодезии, как в науке, в зависимости от решаемых задач выделяется ряд дисциплин. Задачей определения фигуры (формы) и размеров Земли, а также вопросами создания высокоточных геодезических опорных сетей занимается высшая геодезия. Вопросы, связанные с изображением сравнительно небольших частей земной поверхности в виде планов и профилей, решает топография (в строительстве инженерная геодезия). Созданием сплошных изображений значительных территорий в виде карт занимается картография. Аэрогеодезия, космогеодезия, гидрография, маркшейдерия (подземная геодезия) также являются научными направлениями в геодезии. В задачи инженерной геодезии, которые она решает для различных отраслей промышленности, входит топографическая съемка территорий, перенесение в натуру проектов зданий и сооружений, различные измерения на отдельных стадиях строительства и, наконец, определение деформаций и сдвигов сооружений в процессе их эксплуатации.

Решение этих задач осуществляется путем:

1) измерения линий и углов на поверхности земли, под землей (в шахтах и туннелях), над землей при аэрофотосъемке (АФС) и космической съемке, под водой − для составления планов, профилей и специальных целей;

2) вычислительной обработки результатов измерений;

3) графических построений и оформления карт, планов и про- филей.

Строительство промышленных и гражданских сооружений, автомобильных дорог, осушительная или оросительная мелиорации земель требуют широкого использования геодезических методов. Например, при природообустройстве той или иной территории требуются планы, карты, профили, которые позволяют определить существующее состояние земель (почва, растительность, увлажненность и т.д.). По результатам экономического анализа устанавливают необходимость мелиорации, рекультивации, охраны земель и проектируют объекты природообустройства, границы которых затем переносят на местность. В настоящее время в результате внедрения современных технологий решение этих задач может быть почти полностью автоматизировано.

Геодезия тесно связана с математикой, астрономией, географией, геологией, геоморфологией, механикой, оптикой, электроникой, черчением и рисованием.

 

 

 

2.История развития геодезии.

Геодезия возникла за несколько тысячелетий до н.э. в Египте, Китае, Греции и Индии. Пирамиды, каналы, дворцы – возведение этих объектов стало возможным только при разработанных приемах геодезических измерений. Можно выделить следующие основные вехи в развитии инженерной геодезии, в т. ч. и в России:

В III в. до н.э. впервые была осуществлена попытка определения величины земного радиуса египетским математиком и географом Эратосфеном.

Первые исторические сведения о геодезических работах на Руси появились в XI в. н.э. Об этом свидетельствует Тмутараканский камень, на котором сохранилась надпись, что князь Глеб в 1068 г. из- мерил расстояние в 20 верст между Керчью и Таманью по льду. В XVI в. создается одна из первых карт Московского государства «Большой Чертеж». В XVII в. выходит первая русская печатная карта, составленная С.Е. Ремезовым «Чертеж Сибирской земли».

Бурное развитие геодезические работы получили после изобретения Галилеем в XVII в. зрительной трубы, что привело к появлению первых геодезических приборов нивелиров, а несколько позже теодолитов.

В 1739 г. был учрежден Географический Департамент Петербургской Академии Наук, которым в 1758-1763 гг. руководил М. В. Ломоносов.

Французский ученый Деламбер в 1800 г. определил размеры земного эллипсоида и предложил в качестве измерения длины 1 м равный 1 : 40 000 000 части парижского меридиана.

В 1822 г. был основан корпус русских военных топографов.

В XIX в. проводятся геодезические работы по построению геодезических сетей и градусные измерения по меридиану. Большие геодезические работы, проведенные при генеральном межевании после отмены крепостного права в 1861 г. завершились изготовлением генеральных уездных планов и губернских атласов.

После революции 15.03.19г. Совет Народных Комиссаров учреждает Высшее геодезическое управление. С 1927 г. начинает использоваться аэрофотосъемка. В начале 60-х гг. XX в. появляется космическая съемка. За советский период вся территории страны была покрыта геодезической съемкой разных масштабов вплоть до 1:25000.

В 90-е гг. XX в. в геодезии начали широко внедрятся новые компьютерные технологии на всех этапах геодезических работ.

В настоящее время все геодезические работы выполняются в соответствии с Федеральным законом о геодезии и картографии принятым 22.11.95 , «Положением о государственном геодезическом надзоре за геодезической и картографической деятельностью» от 28.03.00 за № 273 и «Положением о лицензировании топографо-геодезической и картографической деятельности в Российской Федерации»» принятом Правительством Российской Федерации 26.08.95 № 847.

 

 

3. Форма и размеры Земли.

 

Земля не является правильным геометрическим телом. Физическая поверхность Земли имеет общую площадь 510 млн км2 , из которых 71 % приходится на долю мирового океана и 29 % на сушу. Средняя высота суши 875 м, средняя глубина океана 3 800м.

Основной уровенной поверхностью или поверхностью геоида называется поверхность, совпадающая с средним уровнем воды океанов в спокойном состоянии и продолженная под материками. Из-за неравномерного распределения масс внутри Земли геоид не имеет правильной геометрической формы (рис.1) и его поверхность не может быть выражена математически.


Рис. 1. Земной эллипсоид и геоид

Однако поверхность геоида ближе всего подходит к математической поверхности эллипсоида вращения, получающегося от вращения эллипса PQ1P1Q вокруг малой оси РР1. Поэтому практически при геодезических и картографических работах поверхность геоида заменяют поверхностью эллипсоида вращения, называемого также сфероидом. Линии пересечения поверхности сфероида плоскостями, проходящими через ось вращения, называются меридианами и представляются на сфероиде эллипсами. Линии пересечения сфероида плоскостями перпендикулярными к оси вращения являются окружностями и называются параллелями. Параллель, плоскость которой проходит через центр сфероида называется экватором. Линии OQ = a и ОР = b называют большой и малой полуосями сфероида (а – радиус экватора, b – полуось вращения Земли).

С 1946 г. для геодезических и картографических работ в СССР приняты размеры земного эллипсоида Ф. Н. Красовского:

a = 6 378245 м,                b = 6 356863м,     а-b»21км,     a = 1:298,3.

 

Влияние кривизны Земли на измеряемые расстояния и высоты точек

При геодезических работах, выполняемых на небольших по площади участках местности, уровенную поверхность принимают за горизонтальную плоскость. Такая замена влечет за собой некоторые искажения в длинах линий и высотах точек.

Рассмотрим при каких размерах участка этими искажениями можно пренебречь. Допустим, что уровенная поверхность является поверхностью шара радиуса R (рис.1.2). Заменим участок шара АоВоСо горизонтальной плоскостью АВС, касающейся шара в центре участка в точке В. Расстояние между точками В (Во) и Со равно r, центральный угол соответствующий данной дуге обозначим α, отрезок касательной ВС = t, тогда в горизонтальном расстоянии между точками В (Во) и Со возникнет ошибка Δd = t – d. Из рис. 1.2 находим t = R•tgα и d = R•α, где угол α выражен в радианах α = d / R, тогда Δ d =R(tgα –α) а так как значение d незначительно по сравнению с R то угол настолько мал, что приближенно можно принять tgα –α = α3/3. Применив формулу определения угла α, окончательно получаем: Δ d = R• α3/3 = d3 /3R2. При d = 10 км и R = 6371 км погрешность определения расстояния при замене сферической поверхности плоскостью составит 1 см.Учитывая реальную точность, с которой производят измерения на местности при геодезических работах, можно считать, что на участках радиусом 20- 25 км погрешность от замены уровенной поверхности плоскостью не имеет практического значения. Иначе обстоит дело с влиянием кривизны Земли на высоты точек. Из прямоугольного треугольника ОВС

где р – отрезок отвесной линии ССо, выражающий влияние кривизны Земли на высоты точки С. Так как полученное значение р очень мало, по сравнению с R, то в знаменателе полученной формулы этой величиной можно пренебречь. Тогда получим

Для различных расстояний l определим поправки в высоты точек местности, значения которых представлены в табл. 1.1, из которой видно, что влияние кривизны Земли на высоты точек сказывается уже на расстоянии в 0,3 км. Это необходимо учитывать при производстве геодезических работ.

Таблица 1.1 Погрешности измерений высот точек на разных расстояниях


Дата добавления: 2019-07-17; просмотров: 3832; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!