Определение размеров механизма



 

По заданным в исходных данных геометрическим размерам “челюсти” и расстоянию между осями вращения кривошипа и коромысла построим треугольники, условно изображающие механизм в крайних положениях (рис 2) и выпишем известные величины:

φ3max=16°

β=50°

lBO3=1.0 м

lDO3=0.9 м

lO1O3=1.05 м

 

Рис.2

 

По теореме косинусов определим

 

lO1A+lAB и lO1A-lAB:

 

Откуда получаем необходимые значения звеньев механизма:

Далее определим положение центра масс шатуна, используя исходные данные и полученные значения длин звеньев:

Теперь определим масштаб построения механизма и с учетом масштаба длины звеньев механизма:

Механизм в данном масштабе с рассчитанными длинами звеньев вычерчен на листе №1 формата А1.

 

Построение графика силы сопротивления

Механическая характеристика, т.е. зависимость силы сопротивления от перемещения верхнего ножа аллигаторных ножниц строится по диаграмме усилия реза, представленной на рис.1б:

сначала по заданной координате находится положение разрезаемого металла (точка К) и в масштабе вычерчивается его сечение -b*b.Далее в зависимости от поворота кривошипа определяется перемещение точки К в метрах (SK) и откладывается как дуговая координата. По максимальному перемещению определяется масштаб перемещений точки, который будет равен:

 ,

далее проводятся лучи из центра О3 через верхнюю точку середины изображенного сечения металла, через точку, равную 0.25b, а также точку, равную 0.5b.Затем на луче, проведенном через точку 0.25b, от начала координат, полученного пересечением дуговой координаты с первым лучом откладывается произвольно отрезок, равный Ррmax и определяется масштаб силы сопротивления:

.

Беря значения с диаграммы усилий реза на соответствующих лучах в масштабе, достраивается механическая характеристика, изображенная на листе №1 формата А1.Значения перемещения и силы сопротивления приведены в таблице 2.1:

 

Таблица 2.1

Перемещение SK , м Сила сопротивления Fc , Кн
0.0616 0
0.0702 666.6
0.0783 1000
0.0867 666.6

 

Построение графиков передаточных функций механизма

 

Для определения значений передаточных функций механизма воспользуемся программой Diada и в качестве входных параметров используем известные геометрические параметры механизма. Сведем в таблицу 2.2 полученные значения передаточных функций для 12 положений механизма:


 

Таблица 2.2

  0 1 2 3 4 5 6 7 8 9 10 11 12
VqK -0.014 0.008 0.029 0.046 0.054 0.048 0.027 -0.007 -0.042 -0.059 -0.054 -0.036 -0.014
VqS2 0.087 0.082 0.10 0.123 0.135 0.127 0.10 0.08 0.104 0.134 0.135 0.112 0.087
U2-1 0.22 0.24 0.20 0.11 0.01 -0.09 -0.19 -0.24 -0.23 -0.15 0 0.14 0.22
U3-1 -0.03 0.02 0.07 0.11 0.13 0.12 0.07 -0.02 -0.1 -0.15 -0.13 -0.09 -0.03

 

Определим масштабы передаточных функций:

 

Построение графиков приведенных моментов

Для упрощения определения закона движения реальный механизм заменяют динамической моделью, под которой понимается отдельно взятое звено приведения, условно снабженное переменным моментом инерции IΣпр и вращающееся под действием момента MΣпр. Величину этого момента определяют по формуле:

 

,

 

где Мi,Fj-моменты и силы, приложенные к механизму в различных его точках, а Vq и ωq(или U)-передаточные функции скоростей. Для нашего механизма эта формула будет иметь вид:


 

,

 

здесь можно пренебречь моментами сил тяжести т.к. они не оказывают сколько-нибудь существенного влияния на величину суммарного приведенного момента. В этой формуле мы можем найти величину момента силы сопротивления, который равен произведению FcVqK.Для этого необходимо умножить силу сопротивления на аналог скорости точки К в положениях механизма, которые соответствуют резу металла. Значения момента сопротивления приведены в таблице 2.3

 

Таблица 2.3

φ, град 132 136 148 155
VqK, м 0.054 0.04 0.05 0.046
Fc, Кн 0 666.6 1000 666.6
Мс, Кн*м 0 26.53 50 30.93

 

Масштаб графика момента сопротивления:

 

 

Напрямую определить движущий момент, приложенный к кривошипу, мы не можем, так как неизвестны характеристики электродвигателя. Поэтому поступают следующим образом: графически интегрируют график момента сопротивления и находят работу силы сопротивления. Последовательность графического интегрирования подробно приведена в [3] и поэтому в настоящей записке не приводится. Имея график работы момент сопротивления, строим график работы движущего момента и график движущего момента (рис 3) в нулевом приближении, представляющий собой константу на интервале поворота кривошипа от 0 до 2π. Её значение равно:

 

Рис 3

 

Для получения искомой зависимости суммарного приведенного момента нужно просуммировать значения моментов в соответствующих положениях. Значения суммарного приведенного момента приведены в таблице 2.4 и рассчитаны только для четырех положений, для которых был вычислен момент сопротивления. Для всех же остальных положений величина суммарного приведенного момента равна величине момента движущего.

 

Таблица 2.4


Дата добавления: 2019-07-15; просмотров: 182; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!