Влияние коэффициента асимметрии цикла на усталостную прочность. Диаграмма предельных циклов напряжений



 

Наиболее просто экспериментально определить предел выносливости материала σ–1 при симметричном цикле нагружения. Испытания показали, что коэффициент асимметрии R цикла влияет на величину предела выносливости. Минимальное значение σR имеем при симметричном цикле (σ–1) и максимальное – при отнулевом (σ0). При расчетах на усталостную прочность желательно знать значения предела выносливости материала при разных величинах коэффициента асимметрии цикла. Это можно определить с помощью диаграмм предельных циклов напряжений. Предельными называют циклы напряжений, наибольшее напряжение которых равно пределу выносливости, т.е. σmax = σR. Из определения характеристик цикла видно, что наибольшее напряжение цикла равно сумме среднего напряжения σmm = (σmax + σmin)/2) и амплитуды цикла σaa = (σmax – σmin)/2), т.е.

σmax = σm + σa. (13)

 

Рис. 7

 

Диаграмму предельных циклов напряжений строят в координатах σm – σa (рис. 7). Точка А диаграммы соответствует пределу прочности материала σ ut при статическом растяжении, точка В – пределу выносливости σ–1 при симметричном цикле. Промежуточные точки диаграммы можно определить, используя зависимость (13) при обработке результатов испытаний на оборудовании, позволяющем создавать асимметричные циклы нагружения. Например, задавшись средним напряжением σ m, устанавливаем в результате серии испытаний значение предельной амплитуды σ a, соответствующей базовому числу циклов нагружения. Результат представляют на диаграмме точкой С. Продолжая испытания с разными величинами σ m, получают множество точек, через которые должна проходить кривая искомой диаграммы. Площадь диаграммы, ограниченная кривой А D СВ и осями координат, определяет область безопасных с точки зрения разрушения циклов нагружения. Полученная путем сложных длительных испытаний кривая может быть заменена прямой АВ. Рабочая область безопасного нагружения сократится, но при этом получаем погрешность, увеличивающую запас прочности рассчитываемых элементов. Упрощенную диаграмму легко построить, для этого достаточно знать только значения предела прочности материала при растяжении σ ut и предела выносливости σ–1 при симметричном цикле нагружения. Имея приближенную диаграмму предельных циклов напряжений (см. рис. 7), можно определить предел выносливости σ R при любом цикле нагружения. Если известен коэффициент асимметрии R цикла нагружений, величину σ R определяют по диаграмме в следующей последовательности.

Произвольный луч ОМ диаграммы является геометрическим местом точек, характеризующих циклы с одинаковым коэффициентом асимметрии R. Угол наклона β луча к оси σ m связан с величиной R следующей зависимостью:

tg β = σam = (1 – R)/(1+R). (14)

Для определения по диаграмме искомого предела выносливости при известном R проводим под углом β = arctg [(1 – R)/(1 + R)] к оси абсцисс луч из точки О до пересечения в точке М с прямой АВ. Предел выносливости σ R находим, используя выражение (13) как сумму координат точки М (σR = = σm + σa).

Для отнулевого цикла можно принять σ0 ≈ (1,45 … 1,65)σ–1.

 

Факторы, влияющие на предел выносливости

 

На выносливость, сопротивление усталости элементов влияют ряд факторов, которые не учитываются в расчетах на прочность при статических нагрузках. В частности, на предел выносливости значительно влияют не только свойства материала, но и концентрация напряжений, размеры поперечных сечений элементов, состояние поверхности и другие факторы. Рассмотрим их влияние более подробно.

Влияние концентрации напряжений. Концентраторы напряжений, т.е. резкие изменения размеров поперечного сечения, отверстия, выточки, надрезы и т.п. значительно снижают предел выносливости, полученный для образцов без концентрации напряжений. Это учитывают эффективным коэффициентом концентрации Кσ, который определяется экспериментально как отношение пределов выносливости образцов, имеющих одинаковые размеры, без концентрации и с концентрацией напряжений. Чем прочнее материал, тем чувствительнее он к концентрации напряжений. Величина Кσ зависит от геометрических особенностей детали и свойств материала. Для типовых концентраторов напряжений и наиболее широко применяемых материалов значения эффективного коэффициента концентрации приводятся в справочной литературе.

Влияние размеров деталей. Замечено, что с увеличением размеров испытуемых образцов предел выносливости при прочих равных условиях уменьшается. Это учитывается с помощью масштабного коэффициента или коэффициента влияния абсолютных размеров поперечного сечения К d – отношения предела выносливости σ–1 d образцов диаметром d к пределу выносливости σ–1 стандартных образцов, имеющих диаметры 6 … 10 мм. В литературе приводится пример, когда при увеличении диаметра образца с 7 до 70 мм значение предела выносливости снижается на 30 … 40%. Это объясняется тем, что с увеличением абсолютных размеров возрастает вероятность попадания структурных дефектов, снижающих прочность. Кроме того, для образцов больших размеров более благоприятны условия развития усталостных трещин. Масштабные коэффициенты К d определяют на гладких образцах и на образцах с концентраторами напряжений.

Влияние состояния поверхности. Известно, что усталостное разрушение начинается с зарождения на поверхности микротрещин, поэтому грубая обработка поверхности способствует их появлению и уменьшению предела выносливости. Для повышения сопротивления усталости нужна высокая чистота поверхности, особенно в местах концентрации напряжений. При расчетах на усталостную прочность шероховатость поверхности учитывают коэффициентом чистоты (качества) поверхности К F, равным отношению предела выносливости образцов с заданной шероховатостью поверхности к пределу выносливости образцов с шероховатостью не грубее Ra = 0,32.

Различные способы поверхностного упрочнения повышают сопротивление усталости. Они учитываются с помощью коэффициента влияния поверхностного упрочнения К v, который определяется отношением пределов выносливости упрочненных и неупрочненных образцов. Величины коэффициента К v в зависимости от способа упрочнения поверхности (цементация, наклеп, азотирование и т.д.) приведены в справочной литературе.

С учетом совместного влияния перечисленных факторов предел выносливости элемента σ Rd меньше предела выносливости σR стандартных образцов. Его определяют по формуле

σRd = (σR·Kd·KF·Kv)/Kσ (15)

При известном максимальном напряжении σmax цикла запас прочности при переменных напряжениях равен

n = σRdmax. (16)

Обычно коэффициент запаса усталостной прочности находится в пределах 1,3 … 5. При расчетах на прочность по касательным переменным напряжениям все приведенные выше рассуждения имеют силу, естественно, обозначения σ в соответствующих выражениях необходимо заменить на τ.


ЛИТЕРАТУРА

1. Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с.

2. Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с.

3. Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.


Дата добавления: 2019-07-15; просмотров: 47;