Перетворення комплексного креслення



Аналізуючи положення прямих та площин стосовно площин проекцій зрозуміло що, лише у тому випадку, коли вони займають особливе положення (рисунки 1.8, 1.10, 1.20), на одній (або двох) площині проекцій матимемо натуральну величину. Якщо прямі чи площини займають загальне положення, натуральної величини бути не може. Для визначення натуральної величини розмірів площини чи відрізка існує кілька способів: заміна площин проекцій, обертання навколо проеціювальної осі, обертання навколо прямої рівня, плоскопаралельне переміщення.

Щоб визначити натуральну величину геометричного об’єкта, необхідно або змінити систему площин проекцій так, щоб об’єкт зайняв особливе положення, або розвернути сам об’єкт у просторі так, щоб він зайняв особливе положення стосовно існуючої системи площин проекцій.

 

Спосіб заміни площин проекцій

 

Суть способу полягає в тому, що положення геометричного об’єкта у просторі залишається незмінним, а одну з площин проекцій замінюють новою, яка створює з другою площиною проекцій нову систему взаємно перпендикулярних площин, відносно якої геометричний об’єкт займе особливе положення. Замін може бути декілька. Способом заміни площин можна розв’язувати багато позиційних та метричних задач нарисної геометрії.

Приклад 2 Визначити натуральну величину відрізка АВ.

 


Рисунок 1.25 – Визначення натуральної величини відрізка способом заміни площин проекцій

 

Для визначення натуральної величини відрізка необхідно ввести допоміжну площину проекцій П4, яка перпендикулярна до горизонтальної площини проекцій та паралельна відрізку АВ.

Площина П4 вводиться на будь – якій відстані від відрізка АВ. На комплексному кресленні достатньо провести нову вісь Х14 паралельно горизонтальній проекції відрізка АВ та з А1 та В1 провести лінії зв’язку, перпендикулярні до осі Х14, на яких відкласти віддалення від горизонтальної площини проекцій, які вимірюються на площині П2 (зроблені позначки однією та двома рисками). На рисунку 1.25 позначений кут нахилу (a) прямої АВ до горизонтальної площини проекцій – це буде кут між НВ прямої АВ та прямою паралельною осі Х14.

Щоб визначити кут нахилу прямої АВ до фронтальної площини проекцій, необхідно ввести площину, перпендикулярну до площини П2 та паралельну відрізку АВ.

Приклад 3 Визначити натуральну величину трикутника АВС (рис. 1.26).

 


Рисунок 1.26 – Визначення натуральної величини трикутника способом заміни площин проекцій

 

Для розв’язання задачі двічі виконують заміну площин проекцій.

Перша заміна виконана таким чином, щоб трикутник перетворити у проеціювальну площину. Для цього необхідно нову вісь Х14 провести перпендикулярно до горизонтальної проекції горизонталі (h1) – це ознака того, що трикутник перпендикулярний до нової площини проекцій (П4), на яку він проектується у відрізок.

Друга заміна виконана таким чином, щоб трикутник перетворити у площину рівня. Для досягнення цього необхідно нову вісь Х45 провести паралельно відрізку, в який спроектувався трикутник АВС.

Відстані, які необхідно виміряти та відкласти від нових осей, позначені відповідними лініями.

 

Спосіб обертання навколо проеціювальної осі

 

Суть способу полягає в тому, що система площин проекцій залишається незмінною, а геометричний елемент змінює своє положення у просторі, займаючи особливе положення відносно площин проекцій. Усі точки геометричного об’єкта обертаються у площинах, паралельних тій площині проекцій, відносно якої вісь обертання перпендикулярна. Якщо вісь обертання перпендикулярна до горизонтальної площини проекцій, то на комплексному кресленні всі горизонтальні проекції точок геометричного об’єкта пересуваються по

колах, а фронтальні проекції – по прямих, паралельних осі Х.

Приклад 4 Визначити натуральну величину трикутника АВС (рис. 1.27).

 

Рисунок 1.27 – Визначення натуральної величини трикутника способом обертання навколо проеціювальної осі

 

Для визначення натуральної величини трикутника АВС необхідно провести горизонталь площини.

Першим обертанням трикутник переведено у проеціювальне положення. Обертання виконано навколо прямої, проведеної через точку А, перпендикулярної до площини П1.

Друге обертання виконано навколо прямої, проведеної через точку В, перпендикулярно до площини П2. Трикутник переведений у положення паралельності площині П1, тому горизонтальна проекція трикутника – це його натуральна величина.

Основним недоліком способу обертання навколо проеціювальної осі є накладання одного зображення на інше. При розв’язанні задач способом плоскопаралельного переміщення цього недоліку немає.

 

4.3 Спосіб плоскопаралельного перенесення

 

Суть способу полягає в тому, що система площин залишається незмінною, а геометричний об’єкт займає особливе положення відносно площин проекцій, що дає можливість розв’язувати позиційні та метричні задачі. Цей спосіб вважають винятковим способом обертання навколо проеціювальної осі. На комплексному кресленні одна з проекцій геометричного об’єкта, не змінюючи своїх розмірів, змінює своє положення відносно осі Х12. Тоді всі точки другої проекції пересуваються по прямих, паралельних осі Х12.

Приклад 5 Визначити натуральну величину відрізка АВ.

 

Рисунок 1.28 – Визначення натуральної величини відрізка способом плоско паралельного переміщення

 

У даному прикладі для визначення натуральної величини відрізка способом плоскопаралельного переміщення горизонтальну проекцію відрізка (А1 В1) розміщують на вільному місці креслення паралельно осі Х12. Фронтальна проекція відрізка АВ буде його натуральною величиною. Для її побудови необхідно з фронтальних проекцій точок А2 та В2 провести лінії, паралельні осі Х12 до перетину з лініями проекційного зв’язку, проведених від горизонтальних проекцій цих точок.


Приклад 6 Визначити натуральну величину трикутника АВС.

 

Рисунок 1.29 – Визначення натуральної величини трикутника способом плоскопаралельного переміщення

 

Щоб визначити натуральну величину трикутника АВС, необхідно спочатку перетворити площину загального положення в площину проеціювальну (у наведеному прикладі – фронтально – проеціювальну), а потім у площину рівня (на рисунку 1.29 – це площина горизонтального рівня). Для виконання таких перетворень перш за все необхідно провести горизонталь площини трикутника.

Щоб перетворити площину загального положення у площину фронтально проеціювальну, необхідно горизонтальну проекцію трикутника розмістити так, щоб горизонталь його стала перпендикулярна до осі Х. У цьому разі всі фронтальні проекції вершин трикутника будуть пересуватися паралельно осі Х до перетину з лініями зв’язку, проведеними з горизонтальних проекцій вершин трикутника АВС. На фронтальну площину проекцій трикутник проектується у вигляді відрізка прямої лінії.

Щоб перетворити площину фронтально-проеціювальну у площину горизонтального рівня, необхідно фронтальну проекцію трикутника (відрізок прямої) розмістити паралельно осі Х – тоді горизонтальні проекції вершин трикутника будуть пересуватися паралельно осі Х до перетину з відповідними лініями зв’язку. Горизонтальна проекція трикутника – це натуральна величина його.


5. Поверхні

 

Світ поверхонь багатогранний та різноманітний. Із усього різноманіття найбільш поширеними є багатогранники та поверхні обертання.

Багатогранниками називають поверхні, які обмежені площинами (гранями). До багатогранників відносять призми та піраміди (рис. 1.30).

 

Рисунок 1.30 – Багатогранники

 

Залежно від того, яка геометрична фігура є основою багатогранника, їх називають тригранними, чотиригранними, п’ятигранними призмами чи пірамідами.

Поверхні обертання утворені обертанням твірної (прямої або кривої лінії) навколо нерухомої осі. До поверхонь обертання відносять конус, циліндр, сферу, тор. На рисунку 1.31 наведені комплексні креслення конуса, циліндра, сфери та тора.

 

Рисунок 1.31 – Поверхні обертання


5.1 Точки на поверхнях

 

Для побудови проекції точки, яка належить поверхні, за заданою проекцією необхідно перш за все з’ясувати, якому елементу поверхні точка належить.

Якщо точка належить поверхні призми чи піраміди, то для побудови другої проекції точки достатньо провести лінії проекційного зв’язку. При побудові проекцій точок, які належать будь-якій поверхні, необхідно пам’ятати про видимість. Невидимі проекції точок позначають у дужках, наприклад, (А1) – горизонтальна проекція точки А невидима.

 

Рисунок 1.32 – Точки на поверхнях

 

На рисунку 1.32 наведені приклади побудови горизонтальних проекцій точок, які належать поверхням піраміди та циліндра. Задані фронтальні проекції точок. Для побудови горизонтальних проекцій точок необхідно провести лінії зв’язку на відповідні елементи поверхонь з урахуванням видимості. У наведених прикладах для поверхні призми фронтальна проекція точки А видна, її горизонтальна проекція – невидна. На поверхні циліндра – фронтальна та горизонтальні проекції точки А не видні.

Для визначення точок, які належать поверхням піраміди або конуса, необхідно виконати допоміжні побудови.

Якщо точка належить ребру піраміди, то для побудови другої проекції точки необхідно провести лінію зв’язку на відповідне ребро. У наведеному на рисунку 1.33а прикладі шукана точка D знаходиться на ребрі SC. За умовами задачі задана фронтальна проекція точки D. Для побудови її горизонтальної проекції достатньо провести лінію зв’язку на горизонтальну проекцію ребра SC.

 

а)                                       б)

Рисунок 1.33 – Точки на поверхні піраміди

 

Якщо точка належить грані піраміди, то через задану точку у відповідній грані необхідно провести допоміжну пряму.

У наведеному прикладі задана фронтальна проекція точки R. Точка R належить грані SAC. Для побудови її горизонтальної проекції послідовно виконують такі дії:

- через задану точку на грані SAC провести фронтальну проекцію допоміжної прямої SD;

- побудувати горизонтальну проекцію допоміжної прямої (S1D1);

- по лінії проеційного зв’язку визначити горизонтальну проекцію точки R на грані ASC.

 

5.2 Перетин поверхонь проеціювальними площинами

 

Якщо будь-яку геометричну поверхню перетнути проеціювальною площиною, то одна з проекцій лінії перетину очевидна – це відрізок прямої лінії, який збігається з проекцією проеціювальної площини. Другу проекцію лінії перетину будують за точками, які їй належать.

Якщо проеціювальна площина перетинає поверхню призми або циліндра, ніякі побудови не виконуються, а лише позначаються проекції лінії перетину. На рисунку 1.34 наведені приклади побудови проекцій лінії перетину призми та циліндра фронтально-проеціювальними площинами та визначена натуральна величина перерізів способом заміни площин проекцій (для призми) та способом плоскопаралельного переміщення (для циліндра).

 

а)                                                б)

Рисунок 1.34 – Перетин призми та циліндра фронтально-проеціювальними площинами

 

Горизонтальна проекція фігури перерізу піраміди фронтально-проеціювальною площиною наведена на рисунку 1.35 Для її побудови проведені лінії проеційного зв’язку на відповідні ребра піраміди. Натуральна величина фігури перетину визначена способом плоскопаралельного переміщення.

 

Рисунок 1.35 – Перетин піраміди фронтально-проеціювальною площиною


Фігура перерізу конуса фронтально-проеціювальною площиною залежить від положення січної площини відносно елементів конуса. На рисунку 1.36 наведені приклади побудови перерізів конуса фронтально-проеціювальними площинами.

 

Рисунок 1.36 – Переріз конуса проеціювальними площинами

 

При виконанні контурів машинобудівних креслень можливі варіанти, коли необхідно побудувати перетин складного тіла проеціювальною площиною (рис. 1.37а) та визначити натуральну величину перерізу. Пропоноване на рисунку 1.37а тіло складається із послідовно встановлених одну на одну шестигранної призми, циліндра та тригранної піраміди.

 

а)                              б)

Рисунок 1.37 – Переріз складного тіла фронтально-проеціювальною площиною

 

Для розв’язання цієї задачі необхідно перш за все побудувати профільну проекцію пропонованого тіла (рис. 1.37б) – вигляд зліва.

Переріз піраміди фронтально-проеціювальною площиною – чотирикутник 1234. Фронтальна проекція його – це відрізок, обмежений точками 12≡22 та 32≡42, який визначається без зайвих побудов. Горизонтальну та профільну проекції чотирикутника одержують по лініях проеційного зв’язку, визначаючи точки на відповідних елементах піраміди: точки 1 та 2 належать ребрам, а 3 та 4 – основі піраміди. На рисунку 1.38а, б та в наведена поетапна побудова фігури перерізу піраміди заданою площиною.

 

а)                                       б)

 

в)

Рисунок 1.38 – Побудова проекцій перерізу піраміди фронтально-проеціювальною площиною


Переріз циліндра даною площиною – еліпс, зрізаний з двох сторін прямими лініями, обмежений точками 5 – 10. Фронтальна проекція фігури перерізу (рис. 1.39) – відрізок, обмежений точками 52 ≡ 62 та 92 ≡ 102. Горизонтальні проекції точок 5 – 10 знаходять по лініях проеційного зв’язку на горизонтальній проекції циліндра (коло). Профільні проекції точок 5 – 10 визначають по лініях проеційного зв’язку (рис. 1.39), проведених із точок 52≡62, 72≡82 та 92≡102. Відстань точок від осі симетрії виміряють на горизонтальній площині та відкладають на відповідній ліній проеційного зв’язку. Шукані профільні проекції точок, належних фігурі перерізу, послідовно з’єднують плавною кривою лінією.

 

Рисунок 1.39 – Побудова проекцій перерізу циліндра фронтально-проеціювальною площиною

 

Фігура перерізу шестигранної призми заданою фронтально-проеціювальною площиною – чотирикутник, обмежений точками 11, 13, 14 та 12.

Фронтальна проекція фігури перерізу – це пряма лінія, яка обмежена точками 112 ≡ 122 та 132 ≡ 142 (рис. 1.40).

Горизонтальні проекції точок 11, 12, 13 та 14 визначені по лініях проекційного зв’язку в перетині з контуром горизонтальної проекції шестигранної призми (рис. 1.40).

 

Рисунок. 1.40 – Побудова проекцій фігури перерізу призми фронтально-проеціювальною площиною

 

Профільні проекції точок 11, 12, 13 та 14 одержують по лініях проеційного зв’язку на відповідних ребрах шестигранної призми (рис. 1.40). Так, точки 11 та 12 належать верхній основі призми, а точки 13 та 14 – бічним ребрам. Для визначення профільних проекцій точок 13 та 14 достатньо з фронтальних проекцій цих точок провести лінії зв’язку до перетину з відповідними ребрами. Для визначення положення профільних проекцій точок 11 та 12 необхідно з фронтальної проекції їх (точка 112 ≡ 122) провести лінії зв’язку, на яких відкласти відстані, які виміряються на горизонтальній площині проекцій (на рисунку 1.40 це відстані від горизонтальної осі симетрії поверхні вниз та вверх відповідно до точок 131 та 141).

Натуральну величину фігури перерізу пропонованої деталі заданою фронтально-проеціювальною площиною найпростіше визначити способом плоскопаралельного переміщення (рис. 1.41). Для цього фронтальну проекцію фігури перерізу – пряму лінію разом з точками 12 – 142, які їй належать, розмістити на вільному місці креслення паралельно осі х. Горизонтальні проекції нового положення точок 1 –14 одержують в перетині ліній проеційного зв’язку, які проведені з нового положення фронтальної проекції фігури перерізу, з прямими, які проведені паралельно осі, з горизонтальних проекцій точок 1 – 14 (рис. 1.41).

 

Рисунок 1.41 – Визначення натуральної величини фігури перерізу поверхні фронтально-проеціювальною площиною

 


Побудова розгорток

 

У різних галузях техніки та будівництва при виготовленні виробів з листового матеріалу часто мають справу з розгортками поверхонь.

Одержують ці розгортки за допомогою послідовного суміщення елементів поверхні з площиною.

 

Побудова розгортки піраміди

 

Щоб побудувати розгортку тригранної піраміди, необхідно перш за все визначити натуральні величини ребер піраміди одним із способів перетворення комплексного креслення. Найпростіше це виконати способом плоскопаралельного переміщення. Для цього на вільному місці креслення розмістити, наприклад, горизонтальні проекції бічних ребер так, щоб вони стали паралельні осі Х. Зважаючи на те, що кожне ребро має спільну точку – вершину S, зручніше накладати одне ребро на інше (рис. 1.42). Натуральну величину ребер одержують на фронтальній площині проекцій у перетині ліній проеційного зв’язку, які проведені з кінців кожного ребра, з лініями, які проведені паралельно осі з кінців фронтальних проекцій ребер (рис. 1.42).

 

Рисунок 1.42 – Визначення натуральної величини ребер піраміди


Розгортку піраміди будують способом тріангуляції. Для цього з довільно вибраної точки S провести промінь, на якому відкласти натуральну величину будь-якого ребра (рис. 1.43а), наприклад, SA (натуральну величину виміряють на фронтальній площині проекцій).

Для побудови грані, наприклад ASB, необхідно визначити положення точки В за двома заданими А та S (рис. 1.43б)). Точку В визначають у перетині дуг, які проведені із точок А та S та дорівнюють натуральним величинам відповідно до сторони основи АВ (виміряються на горизонтальній площині проекцій, оскільки основа паралельна горизонтальній площині проекцій) та бічного ребра ВS, натуральна величина якого визначена на фронтальній площині проекцій.

 

а)                                       б)

Рисунок 1.43 – Побудова грані SAB способом тріангуляції

 

Інші дві грані (SBC таSCA) бічної поверхні піраміди будують так само, як грань ASB (рис. 1.44).

 

Рисунок 1.44 – Розгортка бічної поверхні піраміди


Для завершення побудови повної розгортки піраміди необхідно до будь-якої грані, наприклад до грані ASB, добудувати трикутник основи (рис. 1.45).

 

Рисунок 1.45 – Повна розгортка піраміди

 

Розгортка призми

 

Розгортка поверхні призми складається із розгортки бічної поверхні – це прямокутники, кількість яких залежить від форми основи призми, та двох основ (рис. 1.46).

 

Рисунок 1.46 – Розгортка призми

 

Кожний прямокутник має розміри сторін: висота призми, натуральна величина якої виміряється на фронтальній площині проекцій та відповідну сторону основи, натуральна величина якої виміряється на горизонтальній площині проекцій.

 

Розгортка циліндра

 

Розгортка циліндра складається з бічної поверхні, яка є прямокутником, одна сторона якого дорівнює висоті циліндра, а інша – довжині кола основи циліндра (2πR), та двох основ циліндра – кола радіусом R (рис. 1.47).

 

Рисунок 1.47 – Розгортка циліндра

 

При виконанні розгортки циліндра її поверхню апроксимують призмою. Для цього коло основи поділяють на кілька рівних частин (наприклад, на вісім). Тоді при побудові прямокутника бічної поверхні на горизонтальній прямій відкладають хорду кола стільки разів, на скільки частин поділене коло (рис. 1.48).

 

Рисунок 1.48 – Побудова розгортки циліндра


Розгортка конуса

 

Розгортка конуса складається з бічної поверхні, що є сектором кола, радіус якого дорівнює твірній, а кут визначається за формулою α = 3600R/l, та основи конуса.

При побудові розгортки конуса її поверхню найчастіше апроксимують поверхнею піраміди. Для цього основу поділяють на кілька рівних частин (на рисунку 1.49а – на вісім).

Прямий конус має однакові твірні, натуральною величиною яких є твірні, що обмежують фронтальну проекцію конуса (рис. 1.49а).

Нахилений конус має різні твірні. Натуральну величину мають твірні, що обмежують фронтальну проекцію конуса. Натуральну величину всіх інших твірних визначають способом обертання навколо проеціювальної осі (рис. 1.49б).

 

а)                              б)

Рисунок 1.49 – Визначення натуральних величин твірних конуса

 

Бічну поверхню розгортки нахиленого конуса будують способом тріангуляції.


Дата добавления: 2019-07-15; просмотров: 104; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!