Основні результати, які отримані в результаті вирішення задачі



 

Відповідно до опису схованої марківської моделі, викладеному в попередньому розділі, існує три основних задачі, які повинні бути вирішені для того, щоб модель могла успішно вирішувати поставлені перед нею задачі.

Задача 1

Дано: спостережувана послідовність і модель λ = ( A , B ,π) . Необхідно обчислити ймовірність P ( O | λ) — імовірність того, що дана спостережувана послідовність побудована саме для даної моделі.

Задача 2

Дано: спостережувана послідовність і модель λ = ( A , B ,π) . Необхідно підібрати послідовність станів системи , що найкраще відповідає спостережуваній послідовності, тобто «пояснює» спостережувану послідовність.

Задача 3

Підібрати параметри моделі λ = ( A , B ,π) таким чином, щоб максимізувати P ( O | λ) .

Задача 1 - це задача оцінки моделі, що полягає в обчисленні ймовірності того, що модель відповідає заданій спостережуваній послідовності. До суті цієї задачі можна підійти й з іншої сторони: наскільки обрана ПММ відповідає заданій спостережуваній послідовності. Такий підхід має більшу практичну цінність. Наприклад, якщо в нас коштує питання вибору найкращої моделі з набору вже існуючих, то рішення першої задачі дає нам відповідь на це питання.

Задача 2 - це задача, у якій ми намагаємося зрозуміти, що ж відбувається в прихованій частині моделі, тобто знайти «правильну» послідовність, що проходить модель. Зовсім ясно, що абсолютно точно не можна визначити цю послідовність. Тут можна говорити лише про припущення з відповідним ступенем вірогідності. Проте для наближеного рішення цієї проблеми ми звичайно будемо користуватися деякими оптимальними показниками, критеріями. Далі ми побачимо, що, на жаль, не існує єдиного критерію оцінки для визначення послідовності станів. При рішенні другої задачі необхідно кожний раз ухвалювати рішення щодо того, які показники використати. Дані, отримані при рішенні цієї задачі використаються для вивчення поводження побудованої моделі, знаходження оптимальної послідовності її станів, для статистики й т.п. [6]

Рішення задачі 3 складається в оптимізації моделі таким чином, щоб вона якнайкраще описувала реальну спостережувану послідовність. Спостережувана послідовність, по якій оптимізується ПММ, прийнято називати навчальною послідовністю, оскільки за допомогою її ми «навчаємо» модель. Задача навчання ПММ - це найважливіша задача для більшості проектованих ПММ, оскільки вона полягає в оптимізації параметрів ПММ на основі навчальної спостережуваної послідовності, тобто створюється модель, що щонайкраще описує реальні процеси.

Для кращого розуміння розглянемо все вищесказане на прикладі системи, призначеної для розпізнавання мови. Для кожного слова зі словника W ми спроектуємо ПММ із N станами. Кожне слово зокрема ми представимо як послідовність спектральних векторів. Навчання ми будемо вважати завершеним, коли модель із високою точністю буде відтворювати ту саму послідовність спектральних векторів, що використалася для навчання моделі. У такий спосіб кожна окрема ПММ буде навчатися відтворювати яке-небудь одне слово, але навчати цю модель треба на декількох варіантах проголошення цього слова; тобто наприклад три чоловіки (кожний по-своєму) проговорюють слово «собака», а потім кожне сказане слово конвертується в упорядкований за часом набір спектральних векторів, і модель навчається на основі цих трьох наборів. Для кожного окремого слова проектуються відповідні моделі. Спершу вирішується 3-я задача ПММ: кожна модель настроюється на «проголошення» певного слова зі словника W , відповідно до заданої точності. Для того щоб інтерпретувати кожний стан спроектованих моделей ми вирішуємо 2-ую задачу, а потім виділяємо ті властивості спектральних векторів, які мають найбільша вага для певного стану. Це момент тонкого настроювання моделі. А вже після того, як набір моделей буде спроектований, оптимізований і навчений, варто оцінити модель на предмет її здатності розпізнавати слова в реальному житті. Тут ми вже вирішуємо 1-ую задачу ПММ. Нам дається тестове слово, представлене, зрозуміло, у вигляді спостережуваної послідовності спектральних векторів. Далі ми обчислюємо функцію відповідності цього тестового слова для кожної моделі. Модель, для якої ця функція буде мати найбільше значення, буде вважатися моделлю названого слова.

 


Дата добавления: 2019-07-15; просмотров: 160; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!