Площадь соприкосновения реагирующих веществ



Для увеличения площади соприкосновения реагирующих веществ, их измельчают. Наибольшей степени измельчения достигают путем растворения веществ. Быстрее всего вещества реагируют в растворах.

Природа реагирующих веществ

Например, металлы магний и железо реагируют с соляной кислотой одинаковой концентрации с различной скоростью. Это связано с разной химической активностью металлов.

 

Электролитическая диссоциация

Электролитическая диссоциация — процесс распада электролита на ионы при его растворении или плавлении.

Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость

Слабые электролиты — химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.

Слабыми электролитами являются:

  • почти все органические кислоты и вода;
  • некоторые неорганические кислоты: HF, HClO, HClO2, HNO2, HCN, H2S, HBrO, H3PO4,H2CO3, H2SiO3, H2SO3 и др.;
  • некоторые малорастворимые гидроксиды металлов: Fe(OH)3, Zn(OH)2 и др.

Сильные электролиты — химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся многие неорганические соли, некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.).

Примеры сильных электролитов: некоторые кислоты (HClO4, HMnO4, H2SO4, HCl, HBr; HI), гидроксиды щелочных и щёлочноземельных металлов (NaOH, KOH, Ba(OH)2); большинство солей.

Вопрос 17: Обратимые и необратимые химические реакции.

Обратимые реакции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например:

3H2 + N2 ⇌ 2NH3.

Направление обратимых реакций зависит от концентраций веществ — участников реакции. Так, в приведённой реакции, при малой концентрации аммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении химического равновесия, система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет бо́льшую скорость. Например, простая реакция

N2O4 ⇌ 2NO2

складывается из элементарных реакций

N2O4 ⇌ 2NO2 и 2NO2 ⇌ N2O4.

Для обратимости сложной (многостадийной) реакции, например, уже упоминавшейся реакции синтеза аммиака, необходимо, чтобы были обратимы все составляющие её стадии.

Необратимые реакции — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например, разложение взрывчатых веществ, горение углеводородов, образование малодиссоциирующих соединений, выпадение осадка, образование газообразных веществ.

Ba(ClO2)2 + H2SO4 → 2HClO2 + BaSO4

NaHCO3 + CH3COOH → CH3COONa + H2O + CO2

Однако надо понимать, что при изменении условий протекания реакции, теоретически возможно сместить равновесие любой реакции.

Вопрос 18: Реакции ионного обмена______________________

Ионные реакции – это химические процессы, которые протекают в водном растворе с участием ионов электролитов.

Такие реакции могут протекать как с изменением так и без изменения степени окисления:

3Cu0 + 8 HN +5O3 (разб.) à3Сu +2(NO3)2 + 2N +2O| +4H2O

3Cu0 + 8 H + +2NO3 - à3Сu +2 + 2NO| +4H2O

NaOH + HCl à NaCl + H2O

H+ + OH- à H2O

В последнем случае реакции называются реакциями двойного обмена ( или обменными реакциями)

Реакции обмена - реакции, происходящие между ионами - частицами, у которых все электроны спарены. Это реакции с ионным механизмом. Если ионы связываются в молекулы полярных соединений или в ионные кристаллы, то обратная реакция невозможна. Поэтому многие реакции ионного обмена необратимы, идут до конца.

Реакции в растворах электролитов идут, когда участвующие во взаимодействии ионы полностью или частично уходят из сферы реакции (в виде осадка, газа или слабого электролита). Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части.

Вопрос 21: Гидролиз солей.

Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или молекулярном виде

Различают обратимый и необратимый гидролиз солей:

  • 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону)
  • 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону)
  • 3. Гидролиз соли слабой кислоты и слабого основания
  • 4. Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

Вопрос 22:

Классификации:

Все неорганические соединения делятся на две большие группы:

· Простые вещества — состоят из атомов одного элемента;

· Сложные вещества — состоят из атомов двух или более элементов.

Простые вещества по химическим свойствам делятся на:

· металлы

· неметаллы

· амфотерные простые вещества

· благородные газы

Сложные вещества по химическим свойствам делятся на:

· оксиды:

· осно́вные оксиды

· кислотные оксиды

· амфотерные оксиды

· двойные оксиды

· несолеобразующие оксиды

· Гидроксиды;

· основания

· кислоты

· амфотерные гидроксиды

· соли:

· средние соли

· кислые соли

· осно́вные соли

· двойные и/или комплексные соли

бинарные соединения:

· бескислородные кислоты

· бескислородные соли

· прочие бинарные соединения

Неорганические вещества, содержащие углерод:

Данные вещества традиционно относятся к области неорганической химии:

· Карбонаты

· Карбиды

· Цианиды

· Оксиды углерода

· Цианаты

· Неорганические тиоцианаты (роданиды)

· Селеноцианаты

· Карбонилы металлов

 Металлы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Характерные свойства металлов

  • Металлический блеск
  • Хорошая электропроводность
  • Возможность лёгкой механической
  • Высокая плотность
  • Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  • Большая теплопроводность

В реакциях чаще всего являются восстановителями окислительно-восстановительных реакциях в водных растворах.

Неметаллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

32) Основные положения теории химического строения А.М.Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах. Основные направления развития данной теории.

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами.

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

Основные направления развития двух теорий:

Развитие теории происходит по философским законам (по спирали): формулировки положений корректируются в связи с новейшими научными открытиями, однако суть их остается прежней.

Философские законы развития:

Свойства химических элементов зависят от:

- их относительных масс,

- зарядов их атомных ядер;

- периодичности в изменении внешних электронных слоев атомов;

Свойства органических веществ зависят от:

- их химического строения,

- их пространственного строения,

- их электронного строения.


Дата добавления: 2019-02-22; просмотров: 645; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!