Ложка как шанцевый инструмент 20 страница



Игнорирование еще ладно. Обиднее насмешки. Люди, которые эксперимента не проводили, но не верят в некий эффект исходя из своих догматов, хохочут над людьми, которые эксперимент провели, эффект обнаружили и теперь осмысливают. Такое, например, было с осторожной Бурлаковой: «Обнаружив подобный эффект, мы примерно с полгода повторяли свои опыты, пытаясь исключить ошибку. И уж если поначалу мы сами с недоверием относились к собственным результатам, то недоверие и даже насмешки со стороны коллег… Дело, видимо, в том, что время сверхмалых доз еще не пришло. Вспоминаю, как 3–4 года назад, уже после Бенвенисты и спустя почти 10 лет после Шангина-Березовского, я делала сообщение в одном из институтов по поводу действия сверхмалых доз… Видели бы вы реакцию. Посыпались шуточки… Очевидно, всему свое время. Надо, чтобы созрели не только отдельные личности. Надо, чтобы созрела критическая масса всего общества. Похоже, мы к этому приближаемся».

Видимо, права была ее коллега Пальмина, сказавшая: «Нас ожидает длительный и тернистый путь до окончательного признания научной правоты, в первую очередь эффектов веществ в СМД, а затем и мнимых растворов… Может быть, будет высказана какая-то новая «сумасшедшая» идея, и она, вновь перевернув все сколько-нибудь устоявшиеся представления, направит мысли ученых совсем в другое русло…»

Вот как раз о такой сумасшедшей идее я и хочу рассказать. Идея будет сумасшедшая, но ее автор — гражданин грамотный. Надо его, пожалуй, обрисовать несколькими мазками…

Он уже немолодой человек старой закалки. Советской закалки, я бы даже сказал. Дома у него по советскому обычаю много книг, на стене ковры, которые так любили советские люди, почитавшие ковры и хрусталь за мерило жизненного успеха и достатка. Но помимо желания жить хорошо, сыто и богато (насколько это вообще было возможно при советах) гнездилось во многих людях упомянутой закалки стремление к познанию мира. Такие люди есть всегда, у них гипертрофированный поисковый инстинкт, видимо. Социальная система может таких людей поощрять, а может давить, как это было во времена христианского Средневековья, но они рождаются, чтобы познавать мир. Шило у них в заднице на этот счет! Один, будучи скромным служащим патентного бюро, размышляет об устройстве Вселенной и скорости электромагнитной волны; другой, руководствуясь древними легендами, раскапывает мифологическую Трою; третий с позиций гидромеханика размышляет о сердце; четвертый посвящает всю свою жизнь поиску пути в Индию через Атлантический океан…

Вот с одним из таких одержимых я сейчас и беседую, сидя на скрипучем советском стуле в его скромной четырехкомнатной квартире. Если бы я просто сказал вам, чем он занимается, серьезные читатели покрутили бы пальцем у виска, а мой любимый академик Кругляков — председатель комиссии РАН по борьбе с лженаукой — отлупил бы меня своей мозолистой рукой по мягкой писательской попе. Поэтому, опасаясь экзекуций, я зайду издалека, осторожно, прикрыв попу, то есть расскажу сначала о биографических моментах героя. Зовут его Станислав Зенин.

Он биофизик. Закончил физфак МГУ. Именно оттуда выпускают настоящих биофизиков. Потому что у настоящего биофизика должно быть хорошее физическое образование. Это понятно: физика — основа основ, фундамент. Каким бы красивым домик ни был, без хорошего фундамента он долго не простоит.

Но «по жизни» Зенин вовсе не физик. Он доктор биологических наук и, как ни странно, дважды кандидат наук — химических и философских. То есть у него две кандидатские диссертации. Зачем? Хороший вопрос. Я его тоже задал. Но не сразу, а после некоторого ознакомления с деталями биографии…

— Я поступил в МГУ в 1959 году — как раз тогда кафедру биофизики и открыли. Когда я поступал, у меня был выбор — или медицина, или физика. Но в те годы было впечатление, будто с позиции физики можно определить биологию, что понятно: более точная наука должна определять менее точную. Потом уже я в этом усомнился, отчего и выросла моя вторая кандидатская — по философии… А еще в 1959-м, после запуска спутника, вся молодежь стремилась к звездам, астрономия стала модной, и туда тоже многие шли. И, поскольку баллов у меня было больше, ребята переживали: пойду я на астрономию или нет, составлю им конкуренцию или не составлю. Но я пошел туда, куда пошел, и ничуть не жалею — уж больно мне хотелось понять сущность жизни!

…Завидное стремление. Зенин не стал астрономом, но звезды хватал, правда, не с неба, как его сокурсники-астрономы, а со дна Белого моря, где у биофизиков была биологическая практика. Потому что помимо физики и математики, которые физикам положено знать «по штату», биофизикам на физфаке давали очень много биологии. Заставляли резать лягушек, посылали практиковаться на биостанции. Учили хорошо, но после окончания физфака Зенин понял, что ему не хватает знаний промежуточной науки — химии.

— Химии нам давали мало. И, в основном, это была биохимия. Но я осознал, что понять биологию без хорошего знания химических основ невозможно.

И он был прав. Потому что химия вырастает из физики, а биология из химии. Потом из биологии вырастает психология и так далее. То есть в основе психологии все равно лежит физика, о чем мы еще поговорим.

Короче, после выпуска Зенин пошел на химфак, где полтора десятка лет занимался тем, что послужило фундаментом его дальнейших исследований. Пятнадцать лет он изучал реакции в водных средах, то есть был больше физхимиком, нежели биофизиком. Почему в водных? Да потому что это ближе всего к биологии, мы ведь тоже состоим по большей части из воды. Люди, как я уже писал ранее, всего лишь водные пузыри, оторвавшиеся от океана и приспособившиеся вести автономное существование, называемое жизнью, то есть поддерживающие внутри себя сложный комплекс химических реакций в водной среде (у нас при рождении организм на 80 % состоит из воды, правда, потом мы немного усыхаем — до 70 %).

Так вот, занимаясь изучением химических реакций в водной среде, Зенин с коллегами раз за разом обнаруживали, что вода ведет себя вовсе не как нормальный растворитель.

— Когда определяешь логарифм константы равновесия от обратной температуры, это особенно заметно. Для обычных растворителей этот график линеен. А для воды он нелинейный. Это значит, что вода активно участвует в реакциях, а не является обычной нейтральной средой, сценой действия.

Первая диссертация Зенина как раз и была посвящена исследованию реакций комплексообразования. А вторая, как я уже говорил, по философии, — в 1966 году Зенин поступил в заочную аспирантуру философского факультета.

— За каким…?

Мой вопрос читателю, надеюсь, понятен. Я лично философию не люблю. И знаю философов, которые относятся к своей науке с тем же пренебрежением. Например, доктор философских наук Акоп Назаретян, имеющий, помимо философского, еще и нормальное образование, порой пробрасывает такие фразы: «Только философов на этот семинар звать не надо: заболтают проблему». Абсолютно с ним согласен: болтуны! Переливают из пустого в порожнее вместо того, чтобы идти двор подметать… Но вот у Зенина, как видите, иное мнение.

— Тема моей диссертации была напрямую связана с моей специальностью — «Химическая форма движения материи». Спор тогда в науке был великий — можно ли свести химию к физике? Утверждалось, что ничего собственно химического ни в какой химической реакции нет, все можно свести к чистой физике.

— Правильно. Это же чисто электромагнитные дела. Заряды. Электронные оболочки…

— Но философия ведь не зря подразделяет форму движения материи на механическую, физическую…

— …химическую, биологическую, психологическую, социальную! Я помню, Станислав Валентинович. Проходили. Все мы выросли из шинели диамата.

— Это значит, что во всякой форме движения материи должна быть и есть своя специфика. И ставший позже деканом философского факультета Серафим Тимофеевич Милюхин, который занимался философскими проблемами физики, много думал по этому поводу. И я тоже — как его аспирант.

— Иными словами, вы полагали, что сложная система не сводится к своим простейшим составляющим. Переход количества в качество это называется. Тоже проходили…

Зенин кивнул:

— Именно так. Должно было быть в химии нечто большее, чем в физике. Именно поэтому академик и нобелевский лауреат Семенов сказал однажды свою знаменитую фразу о том, что в химии нет ни одной реакции, которая изучена до конца. Даже самая изученная в мире реакция — кислорода с водородом — состоит из 21 элементарной стадии, из которых изучено только 15. И вплоть до своих девяноста лет Семенов это повторял. Почему? Потому что он, физик по образованию, прекрасно понимал: что-то в химии есть, что не объясняется современной физикой. Это «что-то», на мой взгляд, — среда, в которой происходят все физические процессы.

— Вы ведь не воду имеете в виду? Потому что химические реакции идут не только в воде.

— Не воду. А то, что раньше называли эфиром, а сейчас вакуумом.

— Стоп! Об этом позже, а сейчас вернемся к воде. И к биологии.

— Когда люди пытаются найти начало биологических процессов, многие приходят к неутешительным выводам — «ах, все от Бога!» Меня гипотеза бога не устраивает. Но с лекций по биохимии я до сих пор помню схему метаболизма, то есть химических реакций внутри человека. Она производит сильное впечатление! Ну как такая сложность может сама по себе возникнуть?!. Как все это может быть согласованным?!. Неужели этим никто не управляет?.. И поскольку все это происходит в водной среде, я и занялся изучением реакций в водных растворах. Молекулы — актеры. А вода — это сцена, на которой происходит действие. Люди обычно изучают «актеров» и мало кто занимается «сценой». Надо разбираться со «сценой». Надо разобраться с тем, что такое вода.

…Казалось бы, что может быть проще и понятнее воды? Любой дурак знает, что вода — это «аш-два-о». И даже химическую формулу написать может — Н20. Два атома водорода и один атом кислорода — вот что такое молекула воды. Ничего там больше нет. Простая штука. Однако… Однако у воды столько загадок, что у людей понимающих ум за разум заходит. Вот например…

Если вы возьмете таблицу Менделеева и посмотрите, что там стоит ниже кислорода в том же столбике, то увидите серу. Соединение серы с водородом, аналогичное кислородному, всем нам хорошо знакомо и представляет собой крайне вонючий газ — сероводород. При этом сера вдвое тяжелее кислорода (атомный вес кислорода 16 единиц, а серы — 32). Ничего не брезжит?..

Почему сероводород, который вдвое массивнее «кислородоводорода», являет собой газ, а вдвое более легкое и потому летучее вещество при нормальных условиях является жидкостью? Должно быть наоборот! Точнее, если сероводород является газом (а он и должен им являться по всем химическим канонам), то вода тем более должна быть газом! А она — жидкость. Отчего?

Вопрос этот мучает химиков давно. И с помощью физиков они придумали ответ: в воде есть ассоциаты молекул. То есть некие «комки». Но при этом самым парадоксальным образом считается, что эти комки неустойчивы. Вспомните слова Бурлаковой: «Физики утверждают, что время жизни структурных образований молекул воды чрезвычайно мало». То есть вроде бы они есть, и вроде бы их и нет.

Разгадку жидкой воды нашел Зенин.

— А причина тут в геометрии молекул. Теоретически, согласно квантовой химии, угол между О-Н связями и S-H связями должен быть прямым. И у сероводорода он действительно составляет 92 градуса — все по теории. А вот вода от теории отклонилась. В молекуле воды угол между Н-О-Н составляет 104,5 градуса. Это известный факт, занесенный во все справочники.

— Почему же вода нарушила теорию?

— Гипотез много. Но фактически на вопрос, почему в молекуле воды гибридизация образовала именно такой угол, еще никто не ответил. Однако именно этот факт сделал возможным жизнь на Земле и, как мы дальше увидим, внутреннюю структуру воды и ее память. Был бы у воды угол, теоретически предсказанный, — она была бы газом при нормальной температуре, кипела бы при минус 76, а замерзала только при температуре минус 100 градусов… Дело в том, что угол 104,5 градуса близок к углу в 108 градусов (угол в пятиугольнике). Это значит, что существует теоретическая возможность водородным связям замкнуться в пятичленный цикл; 17-молекулярное образование дает 6 таких циклов, которые являются основой для дальнейшего строительства стабильной структуры.

…Почему физики и химики считают, что стабильные сцепки между молекулами воды невозможны? Да потому что образовываться они могут только за счет так называемых водородных связей, а они нестабильны. Вот этими нестабильными связями и занимается Зенин всю жизнь, начав с изучения химической кинетики. Я знаю Зенина уже лет пятнадцать, с той поры, когда он защитил свою докторскую диссертацию аккурат о проблеме памяти воды. Ключевое слово тут — «защитил». То есть достаточных возражений у людей, чтобы накидать ему черных шаров, не нашлось. Поэтому есть резон познакомиться с аргументацией доктора наук подробнее.

— Первый научный прорыв, я считаю, случился в 1995 году. Именно тогда состоялся научный конгресс Российской Академии наук «Слабые и сверхслабые поля и взаимодействия», где удалось сделать доклад по ранее опубликованным статьям о воде. А ведь просто опубликовать статью об этом было делом нетривиальным! Первая статья у меня была в «Докладах Академии наук». Академик Бучаченко — завкафедрой химической кинетики химфака МГУ, где я работал, — смелый, неординарный человек — представил мою статью в академический журнал, за что я ему до сих пор благодарен. Анатолий Леонидович ученик самого Семенова, кстати.

— Того самого Семенова? Имени которого институт?

— Да. И я счастлив, что получил настоящую семеновскую научную школу. Мало кто знает, что те, кто делал нашу атомную бомбу, были учениками Семенова, поскольку именно он в двадцатые-тридцатые годы заложил теорию цепных реакций. Это была методологическая основа для расчетов…

— Семенов — это титан, — вздыхаю я. — Да, были люди в наше время…

— Титан! — согласился Зенин. — И ученики его были ему под стать. Тот же Бучаченко, например. У нас в науке ведь порядок такой: если ты открываешь какое-то новое направление, надо давать заявку в центральный журнал РАН. Раньше это был «ДАН» (Доклады Академии наук), теперь он называется «Доклады РАН». Так вот, Бучаченко мне поспособствовал в публикации и потом признавался, что ему крепко за это досталось.

…Пару слов о Бучаченко. Простачком, которого можно обвести вокруг пальца, он отнюдь не был. Академик Бучаченко — основатель новой области науки, физики и химии магнитно-спиновых явлений, он автор нескольких открытий — магнитного изотопного эффекта, радиоизлучения химических реакций. Разработал ядерно-магнитно-резонансную спектроскопию парамагнетиков. Лауреат Ленинской и Государственной премий СССР. Чтобы такой человек повелся на лженауку… Значит, убедил его Зенин.

В чем же убедил? И как? Сейчас спросим…

— Что же за статью протолкнул Бучаченко с риском для своей научной репутации?

— О структуре воды.

— Действительно рисковый поступок. А вы-то как дошли до жизни такой, что стали заниматься подобной «лженаукой»?

— Я тогда занимался исследованиями с помощью ядерно-магнитного резонанса. И решил попытаться исследовать структуру воды, которая давно не давала мне покоя, методом протонно-магнитного резонанса. Причем оборудование мне нужно было не абы какое! Через свои связи среди биофизиков я нашел хороший прибор в кардиологическом центре. Пятьсот мегагерц! Это был большой дефицит. У нас на химфаке был только 100-мегагерцовый. А тут в пять раз чувствительнее! Мы шутили тогда, что каждый мегагерц стоил тысячу долларов, так что наш, химфаковский, прибор стоил 100 тыщ долларов, а «пятисотый» — полмиллиона. Не каждое советское учреждение могло такое оборудование приобрести. Вот на нем-то нам и удалось впервые расщепить линию воды на пять линий.

— Насколько я понимаю, одно вещество должно давать одну линию на спектрограмме.

— Правильно. У нас и было одно вещество — бидистиллят, сверхчистая вода без примесей. Но по той теории, которую я разрабатывал, вода должна была содержать структуру — некое стабильное структурное образование. Если это так, если такое образование существует, первым подтверждением этого должно было стать расщепление спектра. Если в воде существуют стабильные образования, то за счет разного экранирования протонов они должны давать мультиплет, а не синплет, то есть несколько линий вместо одной. И этот эффект можно было пронаблюдать только на очень хорошем приборе с высокой разрешающей способностью. На «сотке» это было сделать невозможно. А на «пятисотке» удалось. И не скажу, что сделать это было просто. Это довольно сложный эксперимент, провести который мне помог мой 15-летний опыт работ по химической кинетике. Там есть свои тонкости — нужно получить высокую однородность поля и так далее… Получив результат, я его, разумеется, публиковать не стал, а, как требует научная методология, повторил на частоте в 400 с небольшим мегагерц в Институте химфизики. И уже потом стал думать о публикации.

— Как я понимаю, никакой из существующих в науке теорий подобный эффект не предсказывался, кроме вашей? И был полнейшим противоречием всему, что мы ранее знали о воде?

— Так. Это не просто была сенсация. Это многих шокировало. Потому что ничего, кроме образования димеров и тримеров, о которых мы позже поговорим, не изучалось. Химики вообще в эту сторону не лезли, и я могу их понять. Дело в том, что у воды четыре центра образования водородных связей — два положительных водорода и кислород, имеющий два неподеленных электрона, которые «вытарчивают» отрицательным знаком. Всего четыре центра.

…Тут необходимо дать читателю некоторое пояснение. Молекула воды напоминает тетраэдр. Старые люди, типа меня, помнят советские «треугольные» пакеты с молоком — они как раз и были тетраэдрическими. Натужились? Представили? Каждый угол такого «пакета» — электромагнитный заряд, который готов притянуть заряд другого знака. «Пакет» имеет два плюсовых «контакта» и два минусовых. Через эти «контакты» одна молекула воды может притянуться к другой — торчащим плюсиком к минусику другой молекулы. Но связь эта крайне неустойчивая! Десять в минус двенадцатой секунды может висеть одна молекула на другой, а дальше их вновь растаскивает тепловое движение. Это всем было давно известно, и потому никто никогда не вел речь о том, что в воде могут существовать некие стабильные структуры. Действительно, о какой стабильности может идти речь, если две молекулы могут состыковаться только на 10-12 секунд, а дальше они снова уйти в бесконечное броуновское мельтешение?

Представьте теперь себе пару молекул воды, которые соединились связью — плюсик с минусиком. Два тетраэдрических пакета молока вы как бы соединили вершинками. Сколько осталось свободных вершинок? Восемь минус две занятых — шесть. К каждой из которых может подсоединиться еще по молекуле. Нет-нет, я помню, что это соединение весьма короткоживущее, мне главное, чтобы вы поняли принцип: у каждого «пакета» два плюсика и два минусика на углах. Которыми они могут цепляться к другим пакетам.

Итак, две молекулы могут организовать на какой-то миг димер, а три — тример. Только тример будет существовать еще меньшее количество времени, чем димер, что понятно: если у нас образовалась сцепленная пара молекул, которая вместе существует 10-12 секунд, нужно, чтобы за этот крохотный промежуток времени, пока они не распались, к ним прицепилась третья молекула и какой-то краткий миг они существовали вместе, прежде чем разлететься.

Но молекул в стакане миллиарды миллиардов. В океане — побольше. Им тесно, и они постоянно «трутся», на краткий миг образовывая друг с другом димеры, тримеры и даже более длинные цепочки и «комки». Так?


Дата добавления: 2019-02-13; просмотров: 86; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!