Взаимодействие сенсорных систем



Взаимодействие сенсорных систем осуществляется на спиналь-ном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего поряд­ка. В результате образования множественных связей с другими сен­сорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигна­лов разной модальности. Это особенно свойственно нервным клет­кам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их


свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

ЧАСТНАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

Зрительная система

Зрение эволюционно приспособлено к восприятию электро­магнитных излучений в определенной, весьма узкой части их диа­пазона (видимый свет). Зрительная система дает мозгу более 90% сенсорной информации. Зрение — многозвеньевой процесс, начи­нающийся с проекции изображения на сетчатку уникального периферического оптического прибора — глаза. Затем происходят возбуждение фоторецепторов, передача и преобразование зри­тельной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корко­выми отделами этой системы решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочув­ствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и стекловид­ное тело. Определенная кривизна и показатель преломления рого­вицы и в меньшей мере хрусталика определяют преломление све­товых лучей внутри глаза (рис. 14.2).

Преломляющую силу любой оптической системы выражают в диоптриях (D). Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила здорового глаза составляет 59D при рассматривании далеких и 70,5D — при рассматривании близких предметов. Чтобы схематически предста­вить проекцию изображения предмета на сетчатку, нужно провести линии от его концов через узловую точку (в 7 мм сзади от роговой


оболочки). На сетчатке получается изображение, резко уменьшен­ное и перевернутое вверх ногами и справа налево (рис. 14.3).

Аккомодация. Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное рассстоя-ние. Для ясного видения объекта необходимо, чтобы он был сфо­кусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхно­сти проецировались на поверхность сетчатки (рис. 14.4). Когда мы смотрим на далекие предметы (А), их изображение (а) сфокуси­ровано на сетчатке и они видны ясно. Зато изображение (б) близ­ких предметов (Б) при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, пре­ломляющую способность. При рассматривании близких предметов хрусталик делается более выпуклым (см. рис. 14.2), благодаря чему лучи, расходящиеся от какой-либо точки объекта, сходятся на сетчатке. Механизмом аккомодации является сокращение рес­ничных мышц, которые изменяют выпуклость хрусталика. Хруста­лик заключен в тонкую прозрачную капсулу, которую всегда рас­тягивают, т. е. уплощают, волокна ресничного пояска (циннова связка). Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности. Ресничные мышцы иннерви-руются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуж­дения к этой мышце, ограничивает аккомодацию глаза при рас­сматривании близких предметов. Наоборот, парасимпатомиметиче-ские вещества — пилокарпин и эзерин — вызывают сокращение этой мышцы.

Для нормального глаза молодого человека дальняя точка ясно­го видения лежит в бесконечности. Далекие предметы он рассмат­ривает без всякого напряжения аккомодации, т. е. без сокращения


ресничной мышцы. Ближайшая точка ясного видения находится на расстоянии 10 см от глаза.

Старческая дальнозоркость. Хрусталик с возрастом теряет эластичность, и при изменении натяжения цинновых связок его кривизна меняется мало. Поэтому ближайшая точка ясного виде­ния находится теперь не на расстоянии 10 см от глаза, а отодвига­ется от него. Близкие предметы при этом видны плохо. Это со­стояние называется старческой дальнозоркостью, или пресбио­пией. Пожилые люди вынуждены пользоваться очками с двояко­выпуклыми линзами.

Аномалии рефракции глаза. Две главные аномалии рефракции глаза — близорукость, или миопия, и дальнозоркость, или гипер-метропия, — обусловлены не недостаточностью преломляющих сред глаза, а изменением длины глазного яблока (рис. 14.5, А).

Близорукость. Если продольная ось глаза слишком длинная, то лучи от далекого объекта сфокусируются не на сет­чатке, а перед ней, в стекловидном теле (рис. 14.5, Б). Такой глаз называется близоруким, или миопическим. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, которые отодвинут сфокусированное изображение на сет­чатку (рис. 14.5, В).

Дальнозоркость. Противоположна близорукости даль­нозоркость, или гиперметропия. В дальнозорком глазу (рис. 14.5, Г) продольная ось глаза укорочена, и поэтому лучи от дале­кого объекта фокусируются не на сетчатке, а за ней. Этот недо­статок рефракции может быть компенсирован аккомодационным усилием, т. е. увеличением выпуклости хрусталика. Поэтому даль­нозоркий человек напрягает аккомодационную мышцу, рассматри­вая не только близкие, но и далекие объекты. При рассматрива­нии близких объектов аккомодационные усилия дальнозорких лю-


дей недостаточны. Поэтому для чтения дальнозоркие люди долж­ны надевать очки с двояковыпуклыми линзами, усиливающими преломление света (рис. 14.5, Д). Гиперметропию не следует путать со старческой дальнозоркостью. Общее у них лишь то, что необ­ходимо пользоваться очками с двояковыпуклыми линзами.

Астигматизм. К аномалиям рефракции относится также астигматизм, т. е. неодинаковое преломление лучей в разных на­правлениях (например, по горизонтальному и вертикальному ме­ридиану). Астигматизм обусловлен не строго сферической по­верхностью роговой оболочки. При астигматизме сильных степе­ней эта поверхность может приближаться к цилиндрической, что исправляется цилиндрическими очковыми стеклами, компенсирую­щими недостатки роговицы.

Зрачок и зрачковый рефлекс. Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза. Пропуская только центральные лучи, он улучшает изображение на сетчатке также за счет устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то расширившийся при затемнении зрачок быстро сужается («зрачковый рефлекс»). Мышцы радуж­ной оболочки изменяют величину зрачка, регулируя поток света, попадающий в глаз. Так, на очень ярком свету зрачок имеет мини­мальный диаметр (1,8 мм), при средней дневной освещенности он расширяется (2,4 мм), а в темноте расширение максимально (7,5 мм). Это приводит к ухудшению качества изображения на сетчатке, но увеличивает чувствительность зрения. Предельное изменение диаметра зрачка изменяет его площадь примерно в 17 раз. Во столько же раз меняется при этом световой поток. Между интенсивностью освещения и диаметром зрачка имеется логарифмическая зависимость. Реакция зрачка на изменение освещенности имеет адаптивный характер, так как в небольшом диапазоне стабилизирует освещенность сетчатки.

В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые (m. sphincter iridis), иннервируе-мые парасимпатическими волокнами глазодвигательного нерва, а также радиальные (m. dilatator iridis), иннервируемые симпатиче­скими нервами. Сокращение первых вызывает сужение, сокраще­ние вторых — расширение зрачка. Соответственно этому ацетил-холин и эзерин вызывают сужение, а адреналин — расширение зрачка. Зрачки расширяются во время боли, при гипоксии, а также при эмоциях, усиливающих возбуждение симпатической системы (страх, ярость). Расширение зрачков — важный симптом ряда патологических состояний, например болевого шока, гипоксии.

У здоровых людей размеры зрачков обоих глаз одинаковые. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной. В некоторых патоло­гических случаях размеры зрачков обоих глаз различны (анизо-кория).


Структура и функции сетчатки. Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Она имеет слож­ную многослойную структуру (рис. 14.6). Здесь расположены два вида вторично-чувствующих, различных по своему функциональ­ному значению фоторецепторов (палочковые и колбочковые) и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки (биполярный ней­рон). Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсные сигналы в подкор­ковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и ама-криновые клетки. Все перечисленные нейроны сетчатки с их от­ростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию.

Место выхода зрительного нерва из глазного яблока — диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощу­щаем наличия «дыры» в сетчатке.

Рассмотрим структуру и функции слоев сетчатки, следуя от наружного (заднего, наиболее удаленного от зрачка) слоя сет­чатки к внутреннему (расположенному ближе к зрачку) ее слою.

Пигментный слой. Этот слой образован одним рядом эпителиальных клеток, содержащих большое количество различ­ных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Этот пигмент, называемый также экра­нирующим пигментом, поглощает Доходящий до него свет, пре­пятствуя тем самым его отражению и рассеиванию, что способ­ствует четкости зрительного восприятия. Клетки пигментного эпи­телия имеют многочисленные отростки, которые плотно окружают светочувствительные наружные сегменты палочек и колбочек, Пигментный эпителий играет решающую роль в целом ряде функ­ций, в том числе в ресинтезе (регенерации) зрительного пигмента после его обесцвечивания, в фагоцитозе и переваривании обломков наружных сегментов палочек и колбочек, иными словами, в меха­низме постоянного обновления наружных сегментов зрительных клеток, в защите зрительных клеток от опасности светового по­вреждения, а также в переносе к фоторецепторам кислорода и других необходимых им веществ. Следует отметить, что контакт между клетками пигментного эпителия и фоторецепторами доста­точно слабый. Именно в этом месте происходит отслойка сет­чатки — опасное заболевание глаз. Отслойка сетчатки приводит к нарушению зрения не только вследствие ее смещения с места оптического фокусирования изображения, но и вследствие дегене­рации рецепторов из-за нарушения контакта с пигментным эпите­лием, что приводит к серьезнейшему нарушению метаболизма самих рецепторов. Метаболические нарушения усугубляются тем, что нарушается доставка питательных веществ из капилляров


сосудистой оболочки глаза, а сам слой фоторецепторов капилляров не содержит (аваскуляризован).

Фоторецепторы. К пигментному слою изнутри примы­кает слой фоторецепторов: палочек и колбочек. В сетчатке каж­дого глаза человека находится 6—7 млн колбочек и 110—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на даль­ней периферии имеются только палочки. Колбочки функциони­руют в условиях больших освещенностей, они обеспечивают днев­ное и цветовое зрение; намного более светочувствительные па­лочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на цент­ральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удале­ния от центра сетчатки восприятие цвета и пространственное раз­решение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого пони­жения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении колбочек возникает светобоязнь: человек видит при слабом свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.

Строение фоторецепторной клетки. Фоторецепторная клетка — палочка или колбочка — состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, внутреннего сегмента, соединительной ножки, ядерной части с крупным ядром и пресинаптического окончания. Палочка и кол­бочка сетчатки обращены своими светочувствительными наруж­ными сегментами к пигментному эпителию, т. е. в сторону, проти­воположную свету. У человека наружный сегмент фоторецептора (палочка или колбочка) содержит около тысячи фоторецепторных дисков. Наружный сегмент палочки намного длиннее, чем колбоч­ки, и содержит больше зрительного пигмента. Это частично объяс­няет более высокую чувствительность палочки к свету: палочку


может возбудить всего один квант света, а для активации кол­бочки требуется больше сотни квантов.

Фоторецепторный диск образован двумя мембранами, соеди­ненными по краям. Мембрана диска — это типичная биологиче­ская мембрана, образованная двойным слоем молекул фосфо-липидов, между которыми находятся молекулы белка. Мембрана диска богата полиненасыщенными жирными кислотами, что обус­ловливает ее низкую вязкость. В результате этого молекулы белка в ней быстро вращаются и медленно перемещаются вдоль диска. Это позволяет белкам часто сталкиваться и при взаимодействии образовывать на короткое время функционально важные комп­лексы.

Внутренний сегмент фоторецептора соединен с наружным сег­ментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение моле­кул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно (у чело­века примерно в течение 2—3 нед) перемещаются от основания наружного сегмента палочки к его верхушке, В конце концов вер­хушка наружного сегмента, содержащая до сотни теперь уже ста­рых дисков, обламывается и фагоцитируется клетками пигментно­го слоя. Это один из важнейших механизмов защиты фоторецеп-торных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основ­ном обламываются и фагоцитируются в утреннее и дневное время, а колбочек — в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптичес-кую ленту, вокруг которой много синаптических пузырьков, со­держащих глутамат.

Зрительные пигменты. В палочках сетчатки человека содер­жится пигмент родопсин, или зрительный пурпур, максимум спект­ра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трех типов колбочек (сине-, зелено-и красно-чувствительных) содержится три типа зрительных пиг­ментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) частях спектра. Красный колбочковый пигмент получил название «йодо-псин». Молекула зрительного пигмента сравнительно небольшая (с молекулярной массой около 40 килодальтон), состоит из боль­шей белковой части (опсина) и меньшей хромофорной (ретиналь, или альдегид витамина А). Ретиналь может находиться в различ-


ных пространственных конфигурациях, т. е. изомерных формах, но только одна из них — 11-цис-изомер ретиналя выступает в качест­ве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты». Молекулярная физиология фоторецепции. Рассмотрим после­довательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение (рис. 14.7, А). При поглощении кванта света молекулой зрительного пигмента (родопсина) в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь выпрямляется и превращается в полностыо-транс-ретиналь. Эта реакция длится около 1 пс (1-12 с). Свет вы­полняет роль спускового, или триггерного, фактора, запускающего механизм фоторецепции. Вслед за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части моле­кулы: она обесцвечивается и переходит в состояние метародоп-сина II. В результате этого молекула зрительного пигмента при-


обретает способность к взаимодействию с другим белком — при-мембранным гуанозинтрифосфат-связывающим белком трансдуци-ном (Т). В комплексе с метародопсином II трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте гуанозиндифосфат (ГДФ) на гуанозинтрифосфат (ГТФ). Метаро-допсин II способен активировать около 500—1000 молекул транс-дуцина, что приводит к усилению светового сигнала.

Каждая активированная молекула трансдуцина, связанная с молекулой ГТФ, активирует одну молекулу другого примембранно-го белка — фермента фосфодиэстеразы (ФДЭ). Активированная ФДЭ с высокой скоростью разрушает молекулы циклического гуа-нозинмонофосфата (цГМФ). Каждая активированная молекула ФДЭ разрушает несколько тысяч молекул цГМФ — это еще один этап усиления сигнала в механизме фоторецепции. Результатом всех описанных событий, вызванных поглощением кванта света, становится падение концентрации свободного цГМФ в цитоплазме наружного сегмента рецептора. Это в свою очередь приводит к за­крытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na+ и Са2+. Ионный канал закрывается вследст­вие того, что из-за падения концентрации свободного цГМФ в клетке от канала отходят молекулы цГМФ, которые были связаны с ним в темноте и держали его открытым.

Уменьшение или прекращение входа внутрь наружного сегмен­та Na+ приводит к гиперполяризации клеточной мембраны, т. е. возникновению на ней рецепторного потенциала. На рис. 14.7, Б показаны направления ионных токов, текущих через плазматичес­кую мембрану фоторецептора в темноте. Градиенты концентрации Na+ и К+ поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клет­ки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата). Таким образом, фо-торецепторный процесс завершается уменьшением скорости выде­ления нейромедиатора из пресинаптического окончания фоторе­цептора.

Не менее сложен и совершенен механизм восстановления ис­ходного темнового состояния фоторецептора, т. е. его способно­сти ответить на следующий световой стимул. Для этого необходи­мо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молеку­лами цГМФ, что в свою очередь непосредственно обусловлено по­вышением концентрации свободного цГМФ в цитоплазме. Это по­вышение концентрации обеспечивается утратой метародопсином II способности взаимодействовать с трансдуцином и активацией фер­мента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентра-


ции в цитоплазме свободного кальция из-за закрытия ионного ка­нала мембраны и постоянной работы белка-обменника, выбрасы­вающего кальций из клетки. В результате всего этого концентра­ция цГМФ внутри клетки повышается и цГМФ вновь связывается с ионным каналом плазматической мембраны, открывая его. Через открытый канал внутрь клетки вновь начинают входить Na+ и Са2+, деполяризуя мембрану рецептора и переводя его в «темно-вое» состояние. Из пресинаптического окончания деполяризован­ного рецептора вновь ускоряется выход медиатора.

Нейроны сетчатки. Фоторецепторы сетчатки синапти-чески связаны с биполярными нейронами (см. рис. 14.6, Б). При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиоз-ные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг­лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зри­тельная информация по волокнам зрительного нерва (II пара


черепных нервов) устремляется в мозг. Зрительные нервы от каж­дого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зри­тельного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое по­лушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие — от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых струк­тур, но основное число волокон приходит в таламический подкор­ковый зрительный центр — латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекцион­ную область зрительной зоны коры (стриарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохра­няет ее топологию, или ретинотопию (сигналы от соседних участ­ков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Элек­ трические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой — на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько харак­терных волн (рис. 14.8). Волна а отражает возбуждение внутрен­них сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате актива­ции глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпите­лия, а волна d — горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света «и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем-


ляются импульсы. Ганглиозная клетка сетчатки — это первый нейрон «классического» типа в цепи фоторецептор — мозг. Опи­сано три основных типа ганглиозных клеток: отвечающие на вклю­чение (оп-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сет­чатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация).

Одновременное возбуждение близко расположенных ганглиоз­ных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В ос­нове этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично пере­крываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой фор­ме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбуж­денных нейронов.

Электрические явления в подкорковом зрительном центре и зрительной зоны коры. Картина возбуждения в нейронных сло­ях подкоркового зрительного центра — наружного или латераль­ного, коленчатого тела (НКТ), куда приходят волокна зритель­ного нерва, во многом сходна с той, которая наблюдается в сет­чатке. Рецептивные поля этих нейронов также круглые, но мень­шего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферент­ных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную форма­цию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сен­сорного сигнала и процессы избирательного зрительного внимания.

Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зритель­ной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизон­тали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать.


В каждом небольшом участке зрительной зоны коры по ее глу­бине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка — пример функционального объединения корковых ней­ронов, осуществляющих сходную функцию. Как показывают ре­зультаты исследований последних лет, функциональное объедине­ние отдаленных друг от друга нейронов зрительной зоны коры может происходить также за счет синхронности их разрядов. Многие ней­роны зрительной зоны коры избирательно реагируют на определен­ные направления движения (дирекциональные детекторы) либо на какой-то цвет, а часть нейронов лучше всего отвечает на относитель­ную удаленность объекта от глаз. Информация о разных при­знаках зрительных объектов (форма, цвет, движение) обраба­тывается параллельно в разных частях зрительной зоны коры большого мозга.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных потенциалов (ВП), которые у животных можно одновременно от­водить от всех отделов, а у человека — от зрительной зоны коры с помощью наложенных на кожу головы электродов (рис. 14.10).

Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры большого мозга позволяет установить локализа­цию патологического процесса в зрительной системе человека.

Зрительные функции. Световая чувствительность. Абсолютная чувствительность зрения. Для возникновения зритель­ного ощущения необходимо, чтобы световой раздражитель имел некоторую минимальную (пороговую) энергию. Минимальное чис­ло квантов света, необходимое для возникновения ощущения све-


та, в условиях темновой адаптации колеблется от 8 до 47. Рассчи­тано, что одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия физически предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно, однако число фото­рецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Число колбочек в ре­цептивном поле в центре сетчатки примерно в 100 раз меньше чис­ла палочек в рецептивном поле на периферии сетчатки. Соответ­ственно и чувствительность палочковой системы в 100 раз выше, чем колбочковой.

Зрительная адаптация. При переходе от темноты к свету насту­пает временное ослепление, а затем чувствительность глаза посте­пенно снижается. Это приспособление зрительной сенсорной сис­темы к условиям яркой освещенности называется световой адапта­ цией. Обратное явление (темновая адаптация) наблюдается при переходе из светлого помещения в почти не освещенное. В первое время человек почти ничего не видит из-за пониженной возбуди­мости фоторецепторов и зрительных нейронов. Постепенно начи­нают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увели­чивается в десятки раз, а затем в течение часа — в десятки тысяч раз. Важную роль в этом процессе играет восстановление зри­тельных пигментов. Пигменты колбочек в темноте восстанавли­ваются быстрее родопсина палочек, поэтому в первые минуты пре­бывания в темноте адаптация обусловлена процессами в колбоч­ках. Этот первый период адаптации не приводит к большим изме­нениям чувствительности глаза, так как абсолютная чувствитель­ность колбочкового аппарата невелика.

Следующий период адаптации обусловлен восстановлением родопсина палочек. Этот период завершается только к концу пер­вого часа пребывания в темноте. Восстановление родопсина со­провождается резким (в 100 000—200 000 раз) повышением чув­ствительности палочек к свету. В связи с максимальной чувстви­тельностью в темноте только палочек слабо освещенный предмет виден лишь периферическим зрением.

Существенную роль в адаптации, помимо зрительных пигмен­тов, играет изменение (переключение) связей между элементами сетчатки. В темноте площадь возбудительного центра рецептив­ного поля ганглиозной клетки увеличивается вследствие ослаб­ления или снятия горизонтального торможения. При этом увели­чивается конвергенция фоторецепторов на биполярные нейроны и биполярных нейронов на ганглиозную клетку. Вследствие этого за счет пространственной суммации на периферии сетчатки свето­вая чувствительность в темноте возрастает.


Световая чувствительность глаза зависит и от влияний ЦНС. Раздражение некоторых участков ретикулярной формации ствола мозга повышает частоту импульсов в волокнах зрительного нерва. Влияние ЦНС на адаптацию сетчатки к свету проявляется и в том, что освещение одного глаза понижает световую чувствительность неосвещенного глаза. На чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

Дифференциальная зрительная чувствительность. Если на осве­щенную поверхность, яркость которой I, подать добавочное осве­щение ( dl ), то, согласно закону Вебера, человек заметит разницу в освещенности только если dI / I = K , где К — константа, равная 0,01—0,015. Величину dl / I называют дифференциальным порогом световой чувствительности. Отношение dl / I при разных освещен-ностях постоянно и означает, что для восприятия разницы в осве­щенности двух поверхностей одна из них должна быть ярче другой на 1-1,5 %.

Яркостной контраст. Взаимное латеральное торможение зри­тельных нейронов лежит в основе общего, или глобального, ярко-стного контраста. Так, серая полоска бумаги, лежащая на светлом фоне, кажется темнее такой же полоски, лежащей на темном фо­не. Причина в том, что светлый фон возбуждает множество нейро­нов сетчатки, а их возбуждение тормозит клетки, активированные полоской. Поэтому на ярко освещенном фоне серая полоска ка­жется более темной, чем на черном фоне. Наиболее сильно лате­ральное торможение действует между близко расположенными нейронами, осуществляя локальный контраст. Происходит кажу­щееся усиление перепада яркости на границе поверхностей разной освещенности. Этот эффект называют также подчеркиванием кон­туров: на границе яркого поля и темной поверхности можно видеть две дополнительные линии (еще более яркую линию на границе светлого поля и очень темную линию на границе темной поверхности).

Слепящая яркость света. Слишком яркий свет вызывает не­приятное ощущение ослепления. Верхняя граница слепящей яр­кости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление. Если в поле зрения попадают очень яркие (слепящие) объекты, они ухудшают различение сигналов в значительной части сетчатки (на ночной дороге водителей ослепляют фары встречных машин). При тонких зрительных работах (длительное чтение, сборка мел­ких деталей, работа хирурга) надо пользоваться только рассеян­ным светом, не ослепляющим глаза.

Инерция зрения, слитие мельканий и последовательные об­разы. Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время «инер­ции зрения», необходимое для возникновения зрительного ощуще­ния, в среднем равно 0,03—0,1 с. Это ощущение исчезает также не сразу после того, как прекратилось раздражение, — оно дер-


жится еще некоторое время. Если в темноте водить по воздуху какой-либо яркой точкой (например, горящей спичкой), то мы увидим не движущуюся точку, а светящуюся линию. Быстро сле­дующие одно за другим световые раздражения сливаются в одно непрерывное ощущение.

Минимальная частота следования световых стимулов (напри­мер, вспышек света), при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом свойстве зрения основаны кино и телевидение: мы не ви­дим промежутков между отдельными кадрами (1/24 с в кино), так как зрительное ощущение от одного кадра еще длится до появле­ния другого. Это и обеспечивает иллюзию непрерывности изобра­жения и его движения.

Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включенную лампу и закрыть глаза, то она видна еще в течение некоторого времени. Если же после фиксации взгляда на осве­щенном предмете перевести взгляд на светлый фон, то некоторое нремя можно видеть негативное изображение этого предмета, т. е. светлые его части — темными, а темные — светлыми (отрицатель­ный последовательный образ). Причина его в том, что возбужде­ние от освещенного объекта локально тормозит (адаптирует) оп­ределенные участки сетчатки; если после этого перевести взор на равномерно освещенный экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.

Цветовое зрение. Весь видимый нами спектр электромагнит­ных излучений заключен между коротковолновым (длина волны от 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны до 700 нм), называе­мым красным цветом. Остальные цвета видимого спектра (синий, зеленый, желтый, оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов дает белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение трех основных цветов — красного, зеленого и синего, то могут быть получены любые цвета.

Теории цветоощущения. Наибольшим признанием пользуется трехкомпонентная теория (Г. Гельмгольц), согласно которой цве­товое восприятие обеспечивается тремя типами колбочек с раз­личной цветовой яувствительностью. Одни из них чувствительны к красному цвету, другие — к зеленому, а третьи — к синему. Вся­кий цвет оказывает действие на все три цветоощущающих эле­мента, но в разной степени. Эта теория прямо подтверждена в опытах, где микроспектрофотометром измеряли поглощение излу­чений с разной длиной волны у одиночных колбочек сетчатки че­ловека.

Согласно другой теории, предложенной Э. Герингом, в колбоч­ках есть вещества, чувствительные к бело-черному, красно-зелено­му и желто-синему излучениям. В опытах, где микроэлектродом


отводили импульсы ганглиозных клеток сетчатки животных при освещении монохроматическим светом, обнаружили, что разряды большинства нейронов (доминаторов) возникают при действии любого цвета. В других ганглиозных клетках (модуляторах) импульсы возникают при освещении только одним цветом. Выяв­лено 7 типов модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм).

В сетчатке и зрительных центрах найдено много так называе­мых цветооппонентных нейронов. Действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра — тормозит. Считают, что такие нейроны наиболее эффективно ко­дируют информацию о цвете.

Последовательные цветовые образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую бумагу, то тот же предмет виден окрашенным в дополнительный цвет. Причина этого явления в цветовой адаптации, т. е. снижении чув­ствительности к этому цвету. Поэтому из белого света как бы вы­читается тот, который действовал на глаз до этого, и возникает ощущение дополнительного цвета.

Цветовая слепота. Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам ею страдал (поэтому аномалию цветовосприятия назвали дальтонизмом). Дальтонизм встречается у 8 % мужчин и намного реже у женщин: возникнове­ние его связывают с отсутствием определенных генов в половой непарной у мужчин X-хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихромати­ческие таблицы. Люди, страдающие этим заболеванием, не могут быть полноценными водителями транспорта, так как они не могут различать цвет огней светофоров и дорожных знаков. Существует три разновидности частичной цветовой слепоты: протанопия, дей-теранопия и тританопия. Каждая из них характеризуется отсутст­вием восприятия одного из трех основных цветов.

Люди, страдающие протанопией («краснослепые»), не воспри­нимают красного цвета, сине-голубые лучи кажутся им бесцветны­ми. Лица, страдающие дейтеранопией («зеленослепые»), не отлича­ют зеленые цвета от темно-красных и голубых. При тританопии — редко встречающейся аномалии цветового зрения, не восприни­маются лучи синего и фиолетового цвета.

Все перечисленные виды частичной цветовой слепоты хорошо объясняются трехкомпонентной теорией цветоощущения. Каждый вид этой слепоты — результат отсутствия одного из трех колбоч-ковых цветовоспринимающих веществ. Встречается и полная цве­товая слепота — ахромазия, при которой в результате поражения колбочкового аппарата сетчатки человек видит все предметы лишь в разных оттенках серого.

Восприятие п р остранства. Острота зрения. Остро­той зрения называется максимальная способность глаза различать отдельные детали объектов. Остроту зрения определяют по наи­меньшему расстоянию, между двумя точками, которые глаз разли-


чает, т. е. видит отдельно, а не слитно. Нормальный глаз разли­чает две точки, видимые под углом в 1'. Максимальную остроту фения имеет желтое пятно. К периферии от него острота зрения намного ниже (рис. 14.11). Острота зрения измеряется при помо­щи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Остро­та зрения, определенная по таблице, выражается обычно в от­носительных величинах, причем нормальная острота принимается за единицу. Встречаются люди, обладающие сверхостротой зре­ния (visus более 2).

Поле зрения. Если фиксировать взглядом небольшой предмет, то его изображение проецируется на желтое пятно сетчатки. В этом случае мы видим предмет центральным зрением. Его угло­вой размер у человека 1,5—2°. Предметы, изображения которых падают на остальные места сетчатки, воспринимаются перифери­ ческим зрением- Пространство, видимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измере­ние границы поля зрения производят периметром. Границы поля зрения для бесцветных предметов составляют книзу 70°, кверху — 60°, внутрь — 60° и кнаружи — 90°. Поля зрения обоих глаз у человека частично совпадают, что имеет большое значение для восприятия глубины пространства. Поля зрения для различных цветов неодинаковы и меньше, чем для черно-белых объектов.

Оценка расстояния. Восприятие глубины пространства и оцен­ка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зре­ние). Во втором случае оценка расстояния гораздо точнее. Неко­торое значение в оценке близких расстояний при монокулярном зрении имеет явление аккомодации. Для оценки расстояния имеет значение также то, что образ предмета на сетчатке тем больше, чем он ближе.


Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикрепленных к глазному яблоку несколько кпереди от его экватора. Это 2 косые и 4 прямые мышцы — наружная, внутренняя, верхняя и нижняя. Движение двух глаз совершает­ся одновременно и содружественно. Рассматривая близкие пред­меты, необходимо сводить (конвергенция), а рассматривая дале­кие предметы — разводить зрительные оси двух глаз (диверген­ция) . Важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной инфор­мации необходимо движение изображения на сетчатке. Как уже упоминалось, импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1 — 2 с. Чтобы этого не случилось, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скач­ки (саккады). Вследствие каждого скачка изображение на сетчат­ке смещается с одних фоторецепторов на новые, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превыша­ет 20°. Чем сложнее рассматриваемый объект, тем сложнее траек­тория движения глаз. Они как бы прослеживают контуры изобра­жения, задерживаясь на наиболее информативных его участках (например, в лице — это глаза). Кроме того, глаз непрерывно мелко дрожит и дрейфует (медленно смещается с точки фиксации взора), что также важно для зрительного восприятия.

Бинокулярное зрение. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух пред­метов, хотя и имеется два изображения на двух сетчатках. Изоб­ражения всех предметов попадают на так называемые корреспон­дирующие, или соответственные, участки двух сетчаток, и в вос­приятии человека эти два изображения сливаются в одно. Нада­вите слегка на один глаз сбоку: немедленно начнет двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, конвергируя глаза, то изображение какой-либо более отдаленной точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины рельефа. Человек способен заметить изменение глубины, создаю­щее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый нервный образ происходит в первичной зрительной коре.

Оценка величины объекта. Величина предмета оценивается как функция величины изображения на сетчатке и расстояния предмета от глаза. В случае, когда расстояние до незнакомого предмета оценить трудно, возможны грубые ошибки в определении его величины.


Слуховая система

Слуховая система — одна из важнейших дистантных сен­сорных систем человека в связи с возникновением у него ре­чи как средства межличностного общения. Акустические (звуко­вые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находя­щиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд последова­тельных отделов, которых особенно много в слуховой системе.

Структура и функции наружного и среднего уха. Наружное ухо. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наруж­ное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направлен­ной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

Среднее ухо. В заполненном воздухом среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые по­следовательно передают колебания барабанной перепонки во внут­реннее ухо. Молоточек вплетен рукояткой в барабанную перепон­ку, другая его сторона соединена с наковальней, передающей ко­лебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, по­верхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действую­щие на барабанную перепонку, способны преодолеть сопротивле­ние мембраны овального окна преддверия и привести к колебани­ям жидкости в улитке. Благоприятные условия для колебаний ба­рабанной перепонки создает также слуховая (евстахиева) труба, соединяющая среднее ухо с носоглоткой, что служит выравнива­нию давления в нем с атмосферным. В стенке, отделяющей сред­нее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его от­сутствие из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе расположены две мышцы: напрягающая бара­банную перепонку (m. tensor tympani) и стременная (m. stapedius). Первая из них, сокращаясь, усиливает натяжение барабанной пе­репонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым огра­ничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохра-


няется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сра­ботать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).

Структура и функции внутреннего уха. Строение улитки. Во внутреннем ухе находится улитка, содержащая слуховые рецепто­ры. Улитка представляет собой костный спиральный канал, обра­зующий 2,5 витка. Диаметр костного канала у основания улитки 0,04 мм, а на вершине ее — 0,5 мм. По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: более тонкой — преддверной (вестибулярной) мембраной (мембрана Рейсснера) и более плотной и упругой — основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеет­ся овальное отверстие улитки — helicotrema. Вестибулярная и основная мембрана разделяют костный канал улитки на три хода: верхний, средний и нижний (рис. 14.12).

Верхний канал улитки, или лестница преддверия (scala vesti-buli), у овального окна преддверия через овальное отверстие улит­ки (helicotrema) сообщается с нижним каналом улитки — бара­банной лестницей (scala tympani). Верхний и нижний каналы улитки заполнены перилимфой, напоминающей по составу цереб­роспинальную жидкость.

Между верхним и нижним каналами проходит средний — пе­репончатый канал (scala media). Полость этого канала не сооб­щается с полостью других каналов и заполнена эндолимфои, в составе которой в 100 раз больше калия и в 10 раз меньше натрия, чем в перилимфе, поэтому эндолимфа заряжена положительно по отношению к перилимфе.

Внутри среднего канала улитки на основной мембране распо­ложен звуковоспринимающий аппарат — спиральный (кортиев) орган, содержащий рецепторные волосковые клетки (вторично-чувствующие механорецепторы). Эти клетки трансформируют ме­ханические колебания в электрические потенциалы.

Передача звуковых колебаний по каналам улитки. Колебания мембраны овального окна преддверия вызывают колебания пери-лимфы в верхнем и нижнем каналах улитки, которые доходят до круглого окна улитки. Преддверная мембрана очень тонкая, по­этому жидкость в верхнем и среднем каналах колеблется так, как будто оба канала едины. Упругим элементом, отделяющим этот как бы общий верхний канал от нижнего, является основная мем­брана. Звуковые колебания, распространяющиеся по перилимфе и эндолимфе верхнего и среднего каналов как бегущая волна, приводят в движение эту мембрану и через нее передаются на перилимфу нижнего канала.

Расположение и структура рецепторных клеток спирального органа. На основной мембране расположены два вида рецептор­ных волосковых клеток (вторично-чувствующих механорецепто-ров): внутренние и наружные, отделенные друг от друга кортие-выми дугами. Внутренние волосковые клетки располагаются в один


ряд; общее число их по всей длине перепончатого канала достигает 3500. Наружные волосковые клетки располагаются в 3—4 ряда; общее число их 12 000—20 000. Каждая волосковая клетка имеет удлиненную форму; один ее полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии. Волоски рецепторных клеток омываются эндолимфой и контакти­руют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клет­ками.

Механизмы слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецеп­торных клеток (стереоцилии) касаются покровной мембраны и не­сколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микро-филамент), связывающих между собой верхушки соседних волос­ков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через откры­тый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открывания одного канала, ни­чтожна, около 2 * 10~13 ньютонов. Еще более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растяги­вают вертикальные нити, связывающие верхушки соседних сте­реоцилии, на расстояние, вдвое меньшее, чем диаметр атома во­дорода.

Тот факт, что электрический ответ слухового рецептора до­стигает максимума уже через 100—500 мкс (микросекунд), озна­чает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно мед­леннее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клет­ки приводит к выходу в синаптическую щель неиромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее ге­нерацию распространяющихся в нервные центры импульсов.

Открывания всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилии (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими попереч­ными нитями. Поэтому, когда сгибаются один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Электрические явления в улитке. При отведении электрических


потенциалов от разных частей улитки обнаружено пять различных феноменов: два из них — мембранный потенциал слуховой рецеп-торной клетки и потенциал эндолимфы — не обусловлены действи­ем звука; три электрических явления — микрофонный потенциал улитки, суммационный потенциал и потенциалы слухового нерва — возникают под влиянием звуковых раздражений (рис. 14.13). Если ввести в улитку электроды, соединить их с динамиком через усилитель и подействовать на ухо звуком, то динамик точно вос­произведет этот звук. Описываемое явление называют микрофон­ным эффектом улитки, а регистрируемый электрический потен­циал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков. Частота микрофонных потенциалов соот­ветствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звука.

В ответ на сильные звуки большой частоты (высокие тона) отмечают стойкий сдвиг исходной разности потенциалов. Это явление получило название суммационного потенциала. Различают положительный и отрицательный суммационные потенциалы. Их величины пропорциональны интенсивности звукового давления и силе прижатия волосков рецепторных клеток к покровной мем­бране.

Микрофонный и суммационный потенциалы рассматривают как суммарные рецепторные потенциалы волосковых клеток. Имеются указания, что отрицательный суммационный потенциал генериру­ется внутренними, а микрофонный и положительный суммационные потенциалы — наружными волосковыми клетками. И наконец, в результате возбуждения рецепторов происходит генерация им­пульсного сигнала в волокнах слухового нерва (рис. 14.14).


Иннервация волосковых клеток спирального органа. Сигналы от волосковых клеток поступают в мозг по 32 000 афферентных нервных волокон, входящих в состав улитковой ветви VIII пары черепных нервов. Они являются дендритами ганглиозных нервных Клеток спирального ганглия. Около 90 % волокон идет от внут­ренних волосковых клеток и лишь 10% — от наружных. Сигналы от каждой внутренней волосковой клетки поступают в несколько волокон, в то время как сигналы от нескольких наружных волос­ковых клеток конвергируют на одном волокне. Помимо афферент­ных волокон, спиральный орган иннервируется эфферентными во­локнами, идущими из ядер верхне-оливарного комплекса (оливо-кохлеарные волокна). При этом эфферентные волокна, приходя­щие к внутренним волосковым клеткам, оканчиваются не на самих этих клетках, а на афферентных волокнах. Считают, что они ока­зывают тормозное воздействие на передачу слухового сигнала, способствуя обострению частотного разрешения. Эфферентные волокна, приходящие к наружным волосковым клеткам, воздейст­вуют на них непосредственно и, возможно, регулируют их длину и тем самым управляют чувствительностью как их самих, так и внутренних волосковых клеток.

Электрическая активность путей и центров слуховой системы. Даже в тишине по волокнам слухового нерва следуют спонтан­ные импульсы со сравнительно высокой частотой (до 100 в секун­ду). При звуковом раздражении частота импульсации в волокнах нарастает и остается повышенной в течение всего времени, пока действует звук. Степень учащения разрядов различна у разных волокон и обусловлена интенсивностью и частотой звукового воз­действия (см. рис. 14.14). В центральных отделах слуховой системы много нейронов, возбуждение которых длится в те­чение всего времени действия звука. На низких уровнях слуховой системы сравнительно немного нейронов, отвечающих лишь на включение и выключение звука (нейроны on-, off- и on-off-


типа). На высоких уровнях системы процент таких нейронов возрастает. В слуховой зоне коры большого мозга много нейронов, вызванные разряды которых длятся десятки секунд после прекра­щения звука.

На каждом из уровней слуховой системы с помощью макро­электродов могут быть зарегистрированы характерные по форме вызванные потенциалы, отражающие синхронизированные реакции (ВПСП, ТПСП и импульсные разряды) больших групп нейронов и волокон (рис. 14.15).

Слуховые функции. Анализ частоты звука (высоты тона). Звуковые колебания разной частоты вовлекают в колебательный процесс основную мембрану на всем ее протяжении неодинаково. Локализация амплитудного максимума бегущей волны на основной мембране зависит от частоты звука. Таким образом, в процесс возбуждения при действии звуков разной частоты вовлекаются разные рецепторные клетки спирального органа. В улитке соче­таются два типа кодирования, или механизма различения, высо­ты тонов: пространственный и временной. Пространственное ко­дирование основано на определенном расположении возбужден­ных рецепторов на основной мембране. Однако при действии низ­ких и средних тонов, кроме пространственного, осуществляется и временное кодирование: информация передается по определен­ным волокнам слухового нерва в виде импульсов, частота следо­вания которых повторяет частоту звуковых колебаний (см. рис. 14.14). О настройке отдельных нейронов на всех уровнях слу­ховой системы на определенную частоту звука свидетельствует наличие у каждого из них специфической частотно-пороговой характеристики — зависимости пороговой интенсивности звука,


необходимой для возбуждения нейрона, от частоты звуковых ко­лебаний. Для каждого нейрона существует оптимальная, или ха­рактеристическая, частота звука, на которую порог реакции ней­рона минимален, а в обе стороны по диапазону частот от этого оптимума порог резко возрастает. При надпороговых звуках ха­рактеристическая частота дает и наибольшую частоту разрядов нейрона. Таким образом, каждый нейрон настроен на выделение из всей совокупности звуков лишь определенного, достаточно уз­кого участка частотного диапазона. Частотно-пороговые кривые разных клеток не совпадают, а в совокупности перекрывают весь частотный диапазон слышимых звуков, обеспечивая полноценное их восприятие.

Анализ интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных ней­ронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реак­ций. Кроме того, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы: возбуждение внутренних волос-ковых клеток возникает при большей силе звука, поэтому в зави­симости от его интенсивности меняется соотношение числа воз­бужденных внутренних и наружных волосковых клеток.

Слуховые ощущения. Тональность (частота) звука. Человек воспринимает звуковые колебания с частотой 16—20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница частоты воспринимаемых звуков зависит от возраста человека: с годами она постепенно понижается и старики часто не слышат высоких тонов. Различение частоты звука характеризуется тем минималь­ным различием по частоте двух близких звуков, которое еще улав­ливается человеком. При низких и средних частотах человек спо­собен заметить различия в 1—2 Гц. Встречаются люди с абсолют­ным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.

Слуховая чувствительность. Минимальную силу звука, слыши­мого человеком в половине случаев его предъявления, называют абсолютным порогом слуховой чувствительности. Пороги слыши­мости зависят от частоты звука. В области частот 1000— 4000 Гц слух человека максимально чувствителен. В этих пределах слышен звук, имеющий ничтожную энергию. При звуках ниже 1000 и выше 4000 Гц чувствительность резко уменьшается: напри­мер, при 20 и при 20 000 Гц пороговая энергия звука в миллион раз выше (нижняя кривая AEFGD на рис. 14.16).

Усиление звука может вызвать неприятное ощущение давле­ния и даже боль в ухе. Звуки такой силы характеризуют верхний предел слышимости (кривая ABCD на рис. 14.16) и ограничивают область нормального слухового восприятия. Внутри этой области


лежат и так называемые речевые поля, в пределах которых рас­пределяются звуки речи.

Громкость звука. Кажущуюся громкость звука следует отли­чать от его физической силы. Ощущение нарастания громкости не идет строго параллельно нарастанию интенсивности звучания. Единицей громкости звука является бел. Эта единица представ­ляет собой десятичный логарифм отношения действующей интен­сивности звука I к пороговой его интенсивности I0. В практике в качестве единицы громкости обычно используют децибел (дБ), т. е. 0,1 бела. Дифференциальный порог по громкости в среднем диапазоне слышимых частот (1000 Гц) составляет всего 0,59 дБ, а на краях шкалы частот доходит до 3 дБ. Максимальный уровень громкости звука, вызывающий болевое ощущение, равен 130— 140 дБ над порогом слышимости человека. Громкие звуки (рок-музыка, рев реактивного двигателя) приводят к поражению волос-ковых рецепторных клеток, их гибели и к снижению слуха. Таков же эффект хронически действующего громкого звука даже не за­предельной громкости.

Адаптация. Если на ухо долго действует тот или иной звук, то чувствительность к нему падает. Степень этого снижения чувст­вительности (адаптации) зависит от длительности, силы звука и его частоты. Механизмы адаптации в слуховой системе изучены не полностью. Участие в слуховой адаптации нейронных механиз­мов типа латерального и возвратного торможения несомненно. Известно также, что сокращения m. tensor tympani и т. stapedius могут изменять энергию сигнала, передающуюся на улитку. Кроме того, раздражение определенных зон ретикулярной формации среднего мозга приводит к угнетению вызванной звуком электри­ческой активности улиткового ядра и слуховой зоны коры.


Бинауральный слух. Человек и животные обладают простран­ственным слухом, т. е. способностью определять положение источ­ника звука в пространстве. Это свойство основано на наличии би-наурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях слуховой системы. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углово­го градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия време­ни прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удален­ности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через науш­ники задержка между звуками уже в 11 мкс или различие в интен­сивности двух звуков на 1 дБ приводят к кажущемуся сдвигу ло­кализации источника звука от средней линии в сторону более ран­него или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источ­ника звука в пространстве.

Вестибулярная система

Вестибулярная система играет наряду со зрительной и сома-тосенсорной системами ведущую роль в пространственной ори­ентировке человека. Она получает, передает и анализирует ин­формацию об ускорениях или замедлениях, возникающих в про­цессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномер­ном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются. Импульсы от вестибулоре-цепторов вызывают перераспределение тонуса скелетной мускула­туры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.

Строение и функции рецепторов вестибулярной системы. Периферическим отделом вестибулярной системы является вес­тибулярный аппарат, расположенный в лабиринте пирамиды височной кости. Он состоит из преддверия (vesti-bulum) и трех полукружных каналов (canales cemicircularis). Кроме вестибулярного аппарата, в лабиринт входит улитка, в которой располагаются слуховые рецепторы. Полукружные ка­налы (рис. 14.17) располагаются в трех взаимно перпендикуляр­ных плоскостях: верхний — во фронтальной, задний — в сагит­тальной и латеральный — в горизонтальной. Один из концов каж­дого канала расширен (ампула).


Вестибулярный аппарат включает в себя также два мешочка: сферический (sacculus) и эллиптический, или маточку (utriculus). Первый из них лежит ближе к улитке, а второй — к полукруж­ным каналам. В мешочках преддверия находится отолитов ый аппарат: скопления рецепторных клеток (вторично-чувствую­щие механорецепторы) на возвышениях, или пятнах (macula sac-culi, macula utriculi). Выступающая в полость мешочка часть ре-цепторной клетки оканчивается одним более длинным подвиж­ным волоском и 60—80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция — отолиты. Возбуждение волоско-вых клеток преддверия происходит вследствие скольжения отоли-товой мембраны по волоскам, т. е. их сгибания (рис. 14.18).

В перепончатых полукружных каналах, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2—3 раза боль­ше, чем у воды), рецепторные волосковые клетки сконцентрирова­ны только в ампулах в виде крист (cristae ampularis). Они также снабжены волосками. При движении эндолимфы (во время угло­вых ускорений), когда волоски сгибаются в одну сторону, волос­ковые клетки возбуждаются, а при противоположно направленном движении — тормозятся. Это связано с тем, что механическое управление ионными каналами мембраны волоска с помощью микрофиламентов, описанное в разделе «механизмы слуховой ре­цепции», зависит от направления сгиба волоска: отклонение в одну сторону приводит к открыванию каналов и деполяризации волос-ковой клетки, а отклонение в противоположном направлении вы­зывает закрытие каналов и гиперполяризацию рецептора. В волос-ковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхо-лина и через синапсы активирует окончания волокон вестибуляр­ного нерва.

Волокна вестибулярного нерва (отростки биполярных нейро­нов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, активируют нейроны бульбарного вестибуляр­ного комплекса, в состав которого входят ядра: преддверное верх­нее, или Бехтерева, преддверное латеральное, или Дейтерса, Швальбе и др. Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и ганглии автономной нервной системы.

Электрические явления в вестибулярной системе. Даже в пол­ном покое в вестибулярном нерве регистрируется спонтанная им-пульсация. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при поворотах в другую (де­текция направления движения). Реже частота разрядов повышает­ся или, наоборот, тормозится при любом движении. У 2/з волокон обнаруживают эффект адаптации (уменьшение частоты разрядов) во время длящегося действия углового ускорения. Нейроны вести­булярных ядер обладают способностью реагировать и на измене-


ние положения конечностей, повороты тела, сигналы от внутрен­них органов, т. е. осуществлять синтез информации, поступающей из разных источников.

Комплексные рефлексы, связанные с вестибулярной стимуля­ цией. Нейроны вестибулярных ядер обеспечивают контроль и уп­равление различными двигательными реакциями. Важнейшими из этих реакций являются следующие: вестибулоспинальные, вести-буловегетативные и вестибулоглазодвигательные. Вестибулоспи­нальные влияния через вестибуло-, ретикуло- и руброспинальные тракты изменяют импульсацию нейронов сегментарных уровней спинного мозга. Так осуществляется динамическое перераспреде­ление тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия. Мозжечок при этом ответствен за фазический характер этих реакций: после его удаления вестибулоспинальные влияния становятся по пре­имуществу тоническими. Во время произвольных движений вести­булярные влияния на спинной мозг ослабляются.

В вестибуловегетативные реакции вовлекаются сердечно-сосу­дистая система, пищеварительный тракт и другие внутренние ор­ганы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названный болезнью движения, например морская болезнь. Она проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением сокращений желудка, головокружением, тошнотой и рвотой. Повышенная склонность к болезни движения может быть уменьшена специаль­ной тренировкой (вращение, качели) и применением ряда лекар­ственных средств.

Вестибулоглазодвигательные рефлексы (глазной нистагм) со­стоят в медленном движении глаз в противоположную враще­нию сторону, сменяющемся скачком глаз обратно. Само воз­никновение и характеристика вращательного глазного нистаг­ма — важные показатели состояния вестибулярной системы, они широко используются в морской, авиационной и космической ме­дицине, а также в эксперименте и клинике.

Основные афферентные пути и проекции вестибулярных сигна­ лов. Есть два основных пути поступления вестибулярных сигналов в кору большого мозга: прямой — через дорсомедиальную часть вентрального постлатерального ядра и непрямой вестибулоцере-беллоталамический путь через медиальную часть вентролатераль-ного ядра. В коре полушарий большого мозга основные афферент­ные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. В моторной зоне коры спереди от нижней части центральной борозды обнаружена вторая вести­булярная зона.

Функции вестибулярной системы. Вестибулярная система по­могает организму ориентироваться в пространстве при активном и пассивном движении. При пассивном движении корковые отделы системы запоминают направление движения, повороты и пройден-


ное расстояние. Следует подчеркнуть, что в нормальных условиях пространственная ориентировка обеспечивается совместной дея­тельностью зрительной и вестибулярной систем. Чувствитель­ность вестибулярной системы здорового человека очень высока: отолитовый аппарат позволяет воспринять ускорение прямо­линейного движения, равное всего 2 см/с2. Порог различения наклона головы в сторону — всего около 1 °, а вперед и назад — 1,5—2°. Рецепторная система полукружных каналов позволяет человеку замечать ускорения вращения 2—3° * с~2.

14.2.4. Соматосенсорная система

В соматосенсорную систему включают систему кожной чувст­вительности и чувствительную систему скелетно-мышечного аппа­рата, главная роль в которой принадлежит проприорецепции.

Кожная рецепция. Кожные рецепторы. Рецепторная поверхность кожи огромна (1,4—2,1 м2). В коже сосредоточено множество рецепторов, чувствительных к прикосновению, давле­нию, вибрации, теплу и холоду, а также к болевым раздражениям. Их строение весьма различно (рис. 14.19). Они локализуются на разной глубине кожи и распределены неравномерно по ее поверх­ности. Больше всего таких рецепторов в коже пальцев рук, ладо­ней, подошв, губ и половых органов. У человека в коже с волося­ным покровом (90 % всей кожной поверхности) основным типом


рецепторов являются свободные окончания нервных волокон, иду­щих вдоль мелких сосудов, а также более глубоко локализованные разветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность во­лос к прикосновению. Рецепторами прикосновения являются так­же осязательные мениски (диски Меркеля), образованные в ниж­ней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук. В коже, лишенной волосяного покрова, находят много осязательных телец (тельца Мейсснера). Они ло­кализованы в сосочковом слое дермы пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках молочных же­лез. Эти тельца имеют конусовидную форму, сложное внутреннее строение и покрыты капсулой. Другими инкапсулированными нерв­ными окончаниями, но расположенными более глубоко, являются пластинчатые тельца, или тельца Фатера — Пачини (рецепторы давления и вибрации). Они есть также в сухожилиях, связках, брыжейке. В соединительнотканной основе слизистых оболочек, под эпидермисом и среди мышечных волокон языка находятся инкапсулированные нервные окончания луковиц (колбы Краузе).

Теории кожной чувствительности. Многочисленны и во мно­гом противоречивы. Одним из наиболее распространенных являет­ся представление о наличии специфических рецепторов для 4 ос­новных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой. Согласно этой теории, в основе разного ха­рактера кожных ощущений лежат различия в пространственном и временном распределении импульсов в афферентных волокнах, возбуждаемых при разных видах кожных раздражений. Результа­ты исследования электрической активности одиночных нервных окончаний и волокон свидетельствуют о том, что многие из них воспринимают лишь механические или температурные стимулы.

Механизмы возбуждения кожных рецепторов. Механический стимул приводит к деформации мембраны рецептора. В результате этого электрическое сопротивление мембраны уменьшается, увели­чивается ее проницаемость для Na+. Через мембрану рецептора начинает течь ионный ток, приводящий к генерации рецепторного потенциала. При увеличении рецепторного потенциала до крити­ческого уровня деполяризации в рецепторе генерируются импуль­сы, распространяющиеся по волокну в ЦНС.

Адаптация кожных рецепторов. По скорости адаптации при длящемся действии раздражителя большинство кожных рецепто­ров разделяют на быстро- и медленноадаптирующиеся. Наиболее быстро адаптируются тактильные рецепторы, расположенные в во­лосяных фолликулах, а также пластинчатые тельца. Большую роль в этом играет капсула тельца: она ускоряет адаптационный процесс (укорачивает рецепторный потенциал), так как хорошо проводит быстрые и гасит медленные изменения давления. Поэто­му пластинчатое тельце реагирует на сравнительно высокочастот­ные вибрации 40—1000 Гц; максимальная чувствительность при

 


300 Гц. Адаптация кожных механорецепторов приводит к тому, что мы перестаем ощущать постоянное давление одежды или при­выкаем носить на роговице глаз контактные линзы.

Свойства тактильного восприятия. Ощущение прикосновения и давления на кожу довольно точно локализуется, т. е. относится человеком к определенному участку кожной поверхности. Эта ло­кализация вырабатывается и закрепляется в онтогенезе при учас­тии зрения и проприорецепции. Абсолютная тактильная чувстви­тельность существенно различается в разных частях кожи: от 50 мг до 10 г. Пространственное различение на кожной поверх­ности, т. е. способность человека раздельно воспринимать прикос­новение к двум соседним точкам кожи, также сильно отличается в разных ее участках. На слизистой оболочке языка порог прост­ранственного различия равен 0,5 мм, а на коже спины — более 60 мм. Эти отличия обусловлены главным образом различными размерами кожных рецептивных полей (от 0,5 мм2 до 3 см2) и степенью их перекрытия.

Температурная рецепция. Температура тела человека колеблет­ся в сравнительно узких пределах, поэтому информация о тем­пературе окружающей среды, необходимая для деятельности меха­низмов терморегуляции, имеет особо важное значение. Терморе­цепторы располагаются в коже, роговице глаза, в слизистых обо­лочках, а также в ЦНС (в гипоталамусе). Они делятся на два ви­да: холодовые и тепловые (их намного меньше и в коже они лежат глубже, чем холодовые). Больше всего терморецепторов в коже лица и шеи. Гистологический тип терморецепторов до конца не выяснен, полагают, что ими могут быть немиелинизированные окончания дендритов афферентных нейронов.

Терморецепторы можно разделить на специфические и неспе­цифические. Первые возбуждаются лишь температурными воз­действиями, вторые отвечают и на механическое раздражение. Рецептивные поля большинства терморецепторов локальны. Термо­рецепторы реагируют на изменение температуры повышением час­тоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Повышение частоты импульсации пропорцио­нально изменению температуры, причем постоянная импульсация у тепловых рецепторов наблюдается в диапазоне температуры от 20 до 50 °С, а у Холодовых — от 10 до 41 °С. Дифференциаль­ная чувствительность терморецепторов велика: достаточно изме­нить температуру на 0,2 °С, чтобы вызвать длительные изменения их импульсации.

В некоторых условиях холодовые рецепторы могут быть воз­буждены и теплом (выше 45 °С). Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ван­ну. Важным фактором, определяющим установившуюся активность терморецепторов, связанных с ними центральных структур и ощу­щения человека, является абсолютное значение температуры. В то же время начальная интенсивность температурных ощущений за­висит от разницы температуры кожи и температуры действующего


раздражителя, его площади и места приложения. Так, если руку держали в воде температуры 27 °С, то в первый момент при пере­носе руки в воду, нагретую до 25 °С, она кажется холодной, одна­ко уже через несколько секунд становится возможной истинная оценка абсолютной температуры воды.

Болевая рецепция. Болевая, или ноцицептивная, чувствитель­ность имеет особое значение для выживания организма, так как сигнализирует об опасности при действии любых чрезмерно силь­ных и вредных агентов. В симптомокомплексе многих заболеваний боль является одним из первых, а иногда и единственным проявле­нием патологии и важным показателем для диагностики. Однако корреляция между степенью болевых ощущений и тяжестью па­тологического процесса отмечается не всегда. Несмотря на интен­сивные исследования, до сих пор не удается решить вопрос о су­ществовании специфических болевых рецепторов и адекватных им болевых раздражителей.

Сформулированы две гипотезы об организации болевого вос­приятия: 1) существуют специфические болевые рецепторы (сво­бодные нервные окончания с высоким порогом реакции); 2) специ­фических болевых рецепторов не существует и боль возникает при сверхсильном раздражении любых рецепторов.

В электрофизиологических опытах на одиночных нервных во­локнах типа С обнаружено, что некоторые из них реагируют пре­имущественно на чрезмерные механические, а другие — на чрез­мерные тепловые воздействия. При болевых раздражениях неболь­шие по амплитуде импульсы возникают также в нервных волокнах группы А. Соответственно разной скорости проведения импульсов в нервных волокнах групп С и А отмечается двойное ощущение бо­ли: вначале четкое по локализации и короткое, а затем — длитель­ное, разлитое и сильное (жгучее) чувство боли (рис. 14.20).

Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен. Предполагают, что особенно значимыми являют­ся изменения рН ткани в области нервного окончания, так как этот фактор обладает болевым эффектом при встречающейся в реальных условиях концентрации Н+. Таким образом, наиболее общей причиной возникновения боли можно считать изменение концентрации Н+ при токсическом воздействии на дыхательные ферменты или при механическом либо термическом повреждении клеточных мембран.

Не исключено также, что одной из причин длительной жгучей


боли может быть выделение при повреждении клеток гистамина, протеолитических ферментов, воздействующих на глобулины меж­клеточной жидкости и приводящих к образованию ряда поли­пептидов (например, брадикинина), которые возбуждают оконча­ния нервных волокон группы С.

Адаптация болевых рецепторов возможна: ощущение укола от продолжающей оставаться в коже иглы быстро проходит. Однако в очень многих случаях болевые рецепторы не обнаруживают су­щественной адаптации, что делает страдания больного особенно длительными и мучительными и требует применения анальге­тиков.

Болевые раздражения вызывают ряд рефлекторных соматичес­ких и вегетативных реакций. При умеренной выраженности эти реакции имеют приспособительное значение, но могут привести к тяжелым патологическим эффектам, например к шоку. Среди этих реакций отмечают повышение мышечного тонуса, частоты сердечных сокращений и дыхания, повышение давления, сужение зрачков, увеличение содержания глюкозы в крови и ряд других эффектов.

При ноцицептивных воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов часты так называемые отраженные боли, проецирующиеся в опре­деленные части кожной поверхности (зоны Захарьина — Геда). Так, при стенокардии, кроме болей в области сердца, ощущается боль в левой руке и лопатке. Наблюдаются и обратные эф­фекты.

Например, при локальных тактильных, температурных и боле­вых раздражениях определенных «активных» точек кожной по-нерхности включаются цепи рефлекторных реакций, опосредуемых центральной и автономной нервной системой. Они могут избира­тельно изменять кровоснабжение и трофику тех или иных органов и тканей.

Методы и механизмы иглоукалывания (акупунктуры), локаль­ных прижиганий и тонического массажа активных точек кожи в последние десятилетия стали предметом исследования рефлексо­терапии. Для уменьшения или снятия болевых ощущений в клини­ке используют множество специальных веществ — анальгетичес-ких, анестетических и наркотических. По локализации действия их делят на вещества местного и общего действия. Анестетические вещества местного действия (например, новокаин) блокируют воз­никновение и проведение болевых сигналов от рецепторов в спин­ной мозг или структуры ствола мозга. Анестетические вещества общего действия (например, эфир) снимают ощущение боли, бло­кируя передачу импульсов между нейронами коры большого мозга и ретикулярной формации мозга (погружают человека в наркоти­ческий сон).

В последние годы открыта высокая аналгезирующая актив­ность так называемых нейропептидов, большинство из которых представляет собой либо гормоны (вазопрессин, окситоцин,


АКТГ), либо их фрагменты. Часть нейропептидов являются фраг­ментами липотропного гормона (эндорфины).

Аналгезирующее действие нейропептидов основано на том, что они даже в минимальных дозах (в микрограммах) меняют эффективность передачи в синапсах с «классическими» нейроме-диаторами (ацетилхолин, норадреналин), в частности, между пер­вым и вторым сенсорными нейронами (задние столбы спинного мозга и другие структуры). С использованием нейропептидов в на­стоящее время связываются надежды на эффективное лечение ря­да нервно-психических заболеваний.

Мышечная и суставная рецепция (проприорецепция). В мыш­цах млекопитающих животных и человека содержится три типа специализированных рецепторов: первичные окончания мышечных веретен, вторичные окончания мышечных веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движений, являясь источ­ником информации о состоянии двигательного аппарата орга­низма.


Мышечные веретена. Мышечное веретено представляет собой небольшое продолговатое образование длиной несколько милли­метров, шириной десятые доли миллиметра, расположенное в тол­ще мышцы (рис. 14.21). В разных скелетных мышцах число вере­тен на 1 г ткани варьирует от нескольких единиц до сотни.

Каждое веретено покрыто капсулой. Внутри капсулы находится пучок мышечных волокон. Эти волокна называют интрафузальны-ми в отличие от всех остальных волокон мышцы, которые носят название экстрафузальных. Веретена расположены параллельно икстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — умень­шается.

Различают интрафузальные волокна двух типов: 1) более тол­стые и длинные с ядрами, сосредоточенными в средней, утолщен­ной части волокна — ядерно-сумчатые и 2) более короткие и тон­кие с ядрами, расположенными цепочкой — ядерно-цепочечные. На интрафузальных волокнах спирально расположены чувстви­тельные окончания афферентных волокон группы Iа — так назы­ваемые первичные окончания, и чувствительные окончания аф­ферентных волокон группы II — так называемые вторичные окон­чания. Импульсация, идущая от веретен по афферентным волок­нам группы 1а, в спинном мозге моносинаптически возбуждает мотонейроны своей мышцы и через тормозящий интернейрон тор­мозит мотонейроны мышцы-антагониста (реципрокное торможе­ние). Афферентные волокна группы II возбуждают мотонейроны мышц-сгибателей и тормозят мотонейроны мышц-разгибателей. Имеются, однако, данные, что афферентные волокна группы II, иду­щие от мышц-разгибателей, могут возбуждать мотонейроны своей мышцы.

Веретена имеют и эфферентную иннервацию: интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от у-мотонейронов. Эти так называемые у-эфферентные волокна под­разделяют на динамические и статические. В расслабленной мыш­це импульсация, идущая от веретен, невелика. Веретена реаги­руют импульсацией на удлинение (растяжение) мышцы, причем у первичных окончаний частота импульсации зависит главным обра-юм от скорости удлинения, а у вторичных — от длины мышцы (динамический и статический ответы). Активация у-эфферентов приводит к повышению чувствительности веретен, причем динами­ческие у-эфференты преимущественно усиливают реакцию на ско­рость удлинения мышцы, а статические — на длину. Активация у-эфферентов и без растяжения мышцы сама по себе вызывает импульсацию афферентов веретен вследствие сокращения интра­фузальных мышечных волокон. Показано, что возбуждение а-мо-тонейронов сопровождается возбуждением у-мотонейронов (а-у-коактивация). Уровень возбуждения у-системы тем выше, чем ин­тенсивнее возбуждены а-мотонейроны данной мышцы, т. е. чем Оольше сила ее сокращения. Таким образом, веретена реагируют иа два воздействия: периферическое — изменение длины мышцы, и

 


центральное — изменение уровня активации у-системы. Поэтому реакции веретен в условиях естественной деятельности мышц до­вольно сложны. При растяжении пассивной мышцы наблюдается активация рецепторов веретен, вызывающая рефлекс на растяже­ние. При активном сокращении мышцы уменьшение ее длины ока­зывает на рецепторы веретена дезактивирующее действие, а воз­буждение у-мотонейронов, сопутствующее возбуждению а-мото-нейронов, вызывает активацию рецепторов. Вследствие этого им-пульсация от рецепторов веретен во время движения зависит от нескольких факторов: соотношения длины мышцы, скорости ее укорочения и силы сокращения.

Таким образом, веретена можно рассматривать как непосред­ственный источник информации о длине мышцы и ее изменениях, если только мышца не возбуждена. При активном состоянии мыш­цы необходимо учитывать влияние у-системы. Во время активных движений у-мотонейроны поддерживают импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реа­гировать на неравномерности движения как увеличением, так и уменьшением частоты импульсации и участвовать таким образом в коррекции движений.

Сухожильные рецепторы Гольджи. Они находятся в зоне сое­динения мышечных волокон с сухожилием и расположены по­следовательно по отношению к мышечным волокнам. Сухожиль­ные рецепторы слабо реагируют на растяжение мышцы, но воз­буждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы, что дает основание рассматривать сухожильные рецепторы как источник информации о силе, развиваемой мышцей. Идущие от этих рецеп­торов афферентные волокна относятся к группе lb. На спиналь-ном уровне они через интернейроны вызывают торможение мото­нейронов собственной мышцы и возбуждение мотонейронов мыш­цы-антагониста.

Информация от мышечных рецепторов по восходящим путям спинного мозга поступает в высшие отделы ЦНС, включая кору большого мозга, и участвует в кинестезии.

Суставные рецепторы. Они изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сус­тава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управле­нии им.

Передача и переработка соматосенсорной информации. Чувст­вительность кожи и ощущение движения обусловлены проведе­нием в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спинно-таламическому, значительно различающимся по своим морфологическим и функциональным свойствам. Существует и третий путь — латеральный тракт Мори-на, близкий по ряду характеристик к лемнисковой системе.

Лемнисковый путь. На всех уровнях этот путь состоит из от­носительно толстых и быстропроводящих миелинизированных


нервных волокон. Он передает в мозг сигналы о прикосновении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути заключается в быстрой передаче в мозг наиболее точной информации, дифференцированной по силе и мес­ту воздействия. Первые нейроны этого пути находятся в спинно­мозговом узле, их аксоны в составе задних столбов восходят к тонкому (ядро Голля) и клиновидному (ядро Бурдаха) ядрам продолговатого мозга, где сигналы передаются на вторые нейроны лемнискового пути. Часть волокон, в основном несущих сигналы от суставных рецепторов, оканчивается на мотонейронах сегмен­тарного спинального уровня. Проприоцептивная чувствительность передается в спинном мозге также по дорсальному спинно-моз-жечковому, спинно-цервикальному и некоторым другим путям.

В продолговатом мозге в тонком ядре сосредоточены в основ­ном вторые нейроны тактильной чувствительности, а в клиновид­ном ядре — вторые нейроны проприоцептивной чувствительности. Аксоны этих нейронов образуют медиальную петлю и после пере­креста на уровне олив направляются в специфические ядра тала-муса — вентробазальный ядерный комплекс. В этих ядрах кон­центрируются третьи нейроны лемнискового пути. Их аксоны на­правляются в соматосенсорную зону коры большого мозга.

По мере перехода на все более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значи­тельно увеличиваются (в продолговатом мозге в 2—30, а в коре большого мозга в 15—100 раз) размеры рецептивных полей нейро­нов. Ответы клеток становятся все более продолжительными: да­же короткое прикосновение к коже вызывает залп импульсов, длящийся несколько секунд. Отмечено появление так называемых нейронов новизны, реагирующих на смену раздражителя. Несмот­ря на увеличение размеров рецептивных полей, нейроны остаются достаточно специфичными (нейроны поверхностного прикоснове­ния, глубокого прикосновения, нейроны движения в суставах и нейроны положения или угла сгибания суставов). Для корковой части лемнискового пути характерна четкая топографическая ор­ганизация, т. е. проекция кожной поверхности осуществляется в кору большого мозга по принципу «точка в точку». При этом пло­щадь коркового представительства той или иной части тела опреде­ляется ее функциональной значимостью: формируется так назы­ваемый сенсорный гомункулюс (рис. 14.22).

Удаление соматосенсорной зоны коры приводит к нарушению способности локализовать тактильные ощущения, а ее электро­стимуляция вызывает ощущение прикосновения, вибрации и зуда. В целом роль соматосенсорной зоны коры состоит в интегральной оценке соматосенсорных сигналов, во включении их в сферу соз­нания, полисенсорный синтез и в сенсорное обеспечение выра­ботки новых двигательных навыков.

Спинно-таламический путь. Этот путь значительно отличается от лемнискового. Его первые нейроны также расположены в спинно­мозговом узле, откуда они посылают в спинной мозг медленнопрово-


дящие немиелинизированные нервные волокна. Эти нейроны име­ют большие рецептивные поля, иногда включающие значительную часть кожной поверхности. Вторые нейроны данного пути лока­лизуются в сером веществе спинного мозга, а их аксоны в соста­ве восходящего спинно-таламического пути направляются после перекреста на спинальном уровне в вентробазальный ядерный ком­плекс таламуса (дифференцированные проекции), а также в вент­ральные неспецифические ядра таламуса, внутреннее коленчатое тело, ядра ствола мозга и гипоталамус. Локализованные в этих ядрах третьи нейроны спинно-таламического пути лишь частично дают проекции в соматосенсорную зону коры.

Спинно-таламический путь с более медленной передачей аф­ферентных сигналов, со значительно менее четко дифференциро­ванной информацией о разных свойствах раздражителя и с менее четкой топографической локализацией служит для передачи тем­пературной, всей болевой и в значительной мере — тактильной чувствительности.

Болевая чувствительность практически не представлена на кор­ковом уровне (раздражение коры большого мозга не вызывает боли), поэтому считают, что высшим центром болевой чувстви­тельности является таламус, где 60 % нейронов в соответствую­щих ядрах .четко реагирует на болевое раздражение. Таким обра­зом, эта система играет важную роль в организации генерализо­ванных ответов на действие болевых, температурных и тактиль­ных раздражителей, сигналы о которых идут через структуры ствола, подкорковые образования и кору большого мозга.

Обонятельная система

Рецепторы обонятельной системы. Расположены в области верхних носовых ходов. Обонятельный эпителий находится в сто­роне от главного дыхательного пути, он имеет толщину 100—


150 мкм и содержит рецепторные клетки диаметром 5—10 мкм, расположенные между опорными клетками (рис. 14.23). Общее число обонятельных рецепторов у человека около 10 млн. На по­верхности каждой обонятельной клетки имеется сферическое утол­щение — обонятельная булава, из которой выступает по 6—12 тон­чайших (0,3 мкм) ресничек длиной до 10 мкм. Обонятельные рес­нички погружены в жидкую среду, вырабатываемую обонятельны­ми (боуменовыми) железами. Наличие ресничек в десятки раз уве­личивает площадь контакта рецептора с молекулами пахучих ве­ществ.

Булава является важным цитохимическим центром обоня­тельной клетки.

Обонятельная рецепторная клетка — биполярная клетка, на апикальном полюсе которой находятся реснички, а от ее базаль-ной части отходит немиелинизированный аксон. Аксоны рецепто­ров образуют обонятельный нерв, который пронизывает основание черепа и вступает в обонятельную луковицу. Подобно вкусовым клеткам и наружным сегментам фоторецепторов, обонятельные клетки постоянно обновляются. Продолжительность жизни обоня­тельной клетки около 2 мес.

Молекулы пахучих веществ попадают в слизь, вырабатываемую обонятельными железами, с постоянным током воздуха или из ро­товой полости во время еды. Принюхивание ускоряет приток па­хучих веществ к слизи. В слизи молекулы пахучих веществ на короткое время связываются с обонятельными нерецепторными


белками. Некоторые молекулы достигают ресничек обонятельного рецептора и взаимодействуют с находящимся в них обонятельным рецепторным белком. В свою очередь обонятельный белок акти­вирует, как и в случае фоторецепции, ГТФ-связывающий белок (G-белок), а тот в свою очередь — фермент аденилатциклазу, син­тезирующую цАМФ. Повышение в цитоплазме концентрации цАМФ вызывает открывание в плазматической мембране рецеп-торной клетки натриевых каналов и как следствие — генерацию деполяризационного рецепторного потенциала. Это приводит к им­пульсному разряду в аксоне рецептора (волокне обонятельного нерва).

Обонятельные клетки способны реагировать на миллионы раз­личных пространственных конфигураций молекул пахучих ве­ществ. Между тем каждая рецепторная клетка способна ответить физиологическим возбуждением на характерный для нее, хотя и широкий, спектр пахучих веществ. Существенно, что эти спектры у разных клеток сходны. Вследствие этого более чем 50 % пахучих веществ оказываются общими для любых двух обонятельных клеток.

Раньше считали, что низкая избирательность отдельного ре­цептора объясняется наличием в нем множества типов обонятель­ных рецепторных белков, однако недавно выяснено, что каждая обонятельная клетка имеет только один тип мембранного рецеп­торного белка. Сам же этот белок способен связывать множество пахучих молекул различной пространственной конфигурации. Правило «одна обонятельная клетка — один обонятельный рецеп-торный белок» значительно упрощает передачу и обработку ин­формации о запахах в обонятельной луковице — первом нервном центре переключения и обработки хемосенсорной информации в мозге.

Наличие всего одного обонятельного белка в каждом рецепторе обусловлено не только тем, что каждая обонятельная клетка эк-спрессирует только один из сотен генов обонятельных белков, но и тем, что в пределах данного гена экспрессируется только одна из двух аллелей — материнская или отцовская. Вероятно, что гене­тически обусловленные индивидуальные различия в порогах вос­приятия определенных запахов связаны с функциональными отли­чиями в механизмах экспрессии гена обонятельного рецепторного белка.

Электроольфактограмма. Суммарный электрический потенциал, регистрируемый от поверхности обонятельного эпителия, называ­ют электроольфактограммой (рис. 14.24). Это монофазная нега­тивная волна с амплитудой до 10 мВ и длительностью несколько секунд, возникающая в обонятельном эпителии даже при кратко­временном воздействии на него пахучего вещества. Нередко на электроольфактограмме можно видеть небольшое позитивное от­клонение потенциала, предшествующее основной негативной волне, а при достаточной длительности воздействия регистрируется боль­шая негативная волна на его прекращение (off-реакция). Иногда


на медленные волны электроольфактограммы накладываются быстрые осцилляции, отражающие синхронные импульсные раз­ряды значительного числа рецепторов.

Кодирование обонятельной информации. Как показывают ис­следования с помощью микроэлектродов, одиночные рецепторы от­вечают увеличением частоты импульсации, которое зависит от качества и интенсивности стимула. Каждый обонятельный рецеп­тор отвечает не на один, а на многие пахучие вещества, отдавая «предпочтение» некоторым из них. Считают, что на этих свойствах рецепторов, различающихся по своей настройке на разные группы веществ, может быть основано кодирование запахов и их опозна­ние в центрах обонятельной сенсорной системы. При электрофи-зиологических исследованиях обонятельной луковицы выявлено, что регистрируемый в ней при действии запаха электрический от­вет зависит от пахучего вещества: при разных запахах меняется пространственная мозаика возбужденных и заторможенных участ­ков луковицы. Служит ли это способом кодирования обонятельной информации, пока судить трудно.

Центральные проекции обонятельной системы. Особенность обонятельной системы состоит, в частности, в том, что ее аффе­рентные волокна не переключаются в таламусе и не переходят ни противоположную сторону большого мозга. Выходящий из лу­ковицы обонятельный тракт состоит из нескольких пучков, кото­рые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, нериамигдалярную кору и часть ядер миндалевидного комплекса. Связь обонятельной луковицы с гиппокампом, пириформной корой и другими отделами обонятельного мозга осуществляется через несколько переключений. Показано, что наличие значительного числа центров обонятельного мозга (rhinencephalon) не является необходимым для опознания запахов, поэтому большинство нерв­ных центров, в которые проецируется обонятельный тракт, можно рассматривать как ассоциативные центры, обеспечивающие связь обонятельной сенсорной системы с другими сенсорными система­ми и организацию на этой основе ряда сложных форм поведе­ния — пищевой, оборонительной, половой и т. д.

Эфферентная регуляция активности обонятельной луковицы щучена пока недостаточно, хотя есть морфологические предпо­сылки, свидетельствующие о возможности таких влияний.

Чувствительность обонятельной системы человека. Эта чувстви­тельность чрезвычайно велика: один обонятельный рецептор может


быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. В то же время изменение интенсивности действия веществ (порог различения) оценивается людьми довольно грубо (наименьшее вос­принимаемое различие в силе запаха составляет 30—60 % от его ис­ходной концентрации). У собак эти показатели в 3—6 раз выше. Адаптация в обонятельной системе происходит сравнительно мед­ленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и от концентрации паху­чего вещества.

14.2.6. Вкусовая система

В процессе эволюции вкус формировался как механизм выбора или отвергания пищи. В естественных условиях вкусовые ощуще­ния комбинируются с обонятельными, тактильными и термически­ми, также создаваемыми пищей. Важным обстоятельством являет­ся то, что предпочтительный выбор пищи отчасти основан на врожденных механизмах, но в значительной мере зависит от свя­зей, выработанных в онтогенезе условнорефлекторным путем.

Вкус, так же как и обоняние, основан на хеморецепции. Вку­совые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной ра­боте органов пищеварения или к удалению вредных для организма веществ, попавших в рот с пищей.

Рецепторы вкуса. Вкусовые почки — рецепторы вкуса — рас­положены на языке, задней стенке глотки, мягком небе, миндали­нах и надгортаннике. Больше всего их на кончике, краях и задней части языка. Каждая из примерно 10 000 вкусовых почек человека состоит из нескольких (2—6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму; у человека ее длина и ширина около 10 мкм. Вкусовая почка не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.

Вкусовые клетки — наиболее короткоживущие эпителиальные клетки организма: в среднем через каждые 250 ч старая клетка сменяется молодой, движущейся к центру вкусовой почки от ее периферии. Каждая из рецепторных вкусовых клеток длиной 10— 20 мкм и шириной 3—4 мкм имеет на конце, обращенном в про­свет поры, 30—40 тончайших микроворсинок толщиной 0,1*— 0,2 мкм и длиной 1—2 мкм. Считают, что они играют важную роль в возбуждении рецепторной клетки, воспринимая те или иные химические вещества, адсорбированные в канале почки. Предпола­гают, что в области микроворсинок расположены активные цен­тры — стереоспецифические участки рецептора, избирательно вос­принимающие разные адсорбированные вещества. Этапы первичного преобразования химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов еще не известны.


 Электрические потенциалы вкусовой системы. В опытах с вве­дением микроэлектрода внутрь вкусовой почки животных показа­но, что суммарный потенциал рецепторных клеток изменяется при раздражении языка разными веществами (сахар, соль, кислота). Эtot потенциал развивается довольно медленно: максимум его достигается к 10—15-й секунде после воздействия, хотя электри­ческая активность в волокнах вкусового нерва начинается значи­тельно раньше.

Проводящие пути и центры вкуса. Проводниками всех видов вкусовой чувствительности служат барабанная струна и языко- глоточный нерв, ядра которых в продолговатом мозге содержат первые нейроны вкусовой системы. Многие из волокон, идущих от вкусовых рецепторов, отличаются определенной специфичнос­тью, так как отвечают учащением импульсных разрядов лишь на действие соли, кислоты и хинина. Другие волокна реагируют на сахар. Наиболее убедительной считается гипотеза, согласно ко­торой информация о 4 основных вкусовых ощущениях: горьком, с ладком, кислом и соленом — кодируется не импульсацией в оди­ночных волокнах, а разным распределением частоты разрядов в большой группе волокон, по-разному возбуждаемых вкусовым ве­ществом.

Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга. От ядра одиночного пучка аксоны вторых ней­ронов восходят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, аксоны которых на­правляются в корковый центр вкуса. Результаты исследований пока не позволяют оценить характер преобразований вкусовых афферентных сигналов на всех уровнях вкусовой системы.

Вкусовые ощущения и восприятие. У разных людей абсолют­ные пороги вкусовой чувствительности к разным веществам су­щественно отличаются вплоть до «вкусовой слепоты» к отдельным агентам (например, к креатину). Абсолютные пороги вкусовой чувствительности во многом зависят от состояния организма (они изменяются в случае голодания, беременности и т.д.). При изме­рении абсолютной вкусовой чувствительности возможны две ее оценки: возникновение неопределенного вкусового ощущения (от­личающегося от вкуса дистиллированной воды) и осознанное вос­приятие или опознание определенного вкуса. Порог восприятия, как и в других сенсорных системах, выше порога ощущения. Поро­ги различения минимальны в диапазоне средних концентраций веществ, но при переходе к большим концентрациям резко повы­шаются. Поэтому 20 % раствор сахара воспринимается как мак­симально сладкий, 10 % раствор натрия хлорида — как макси­мально соленый, 0,2 % раствор соляной кислоты — как макси­мально кислый, а 0,1 % раствор хинина сульфата — как макси­мально горький. Пороговый контраст ( dl / I ) для разных веществ значительно колеблется.

Вкусовая адаптация. При длительном действии вкусового ве­щества наблюдается адаптация к нему (снижается интенсивность


вкусового ощущения). Продолжительность адаптации пропорцио­нальна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена и перекрестная адаптация, т. е. изменение чувствительности к одно­му веществу при действии другого. Применение нескольких вкусо­вых раздражителей одновременно или последовательно дает эф­фекты вкусового контраста или смешения вкуса. Например, адап­тация к горькому повышает чувствительность к кислому и соле­ному, адаптация к сладкому обостряет восприятие всех других вкусовых стимулов. При смешении нескольких вкусовых веществ может возникнуть новое вкусовое ощущение, отличающееся от вкуса составляющих смесь компонентов.

Висцеральная система

Большая роль в жизнедеятельности организма принадлежит висцеральной, или интерорецептивной, сенсорной системе. Она воспринимает изменения внутренней среды организма и поставля­ет центральной и автономной нервной системе информацию, необ­ходимую для рефлекторной регуляции работы всех внутренних органов. Типичными в этом отношении являются рефлексы Герин­га и Брейера (саморегуляция дыхания), рефлексы с прессо- и хеморецепторов каротидного синуса, рефлекторное выделение же­лудочного сока, рефлекторные акты мочеиспускания и дефекации, рефлекторные кашель и рвота и др.

Интерорецепторы. Описаны разнообразные интерорецепторы, или интероцепторы, которые представлены свободными нервными окончаниями (дендриты нейронов спинальных ганглиев или клеток Догеля II типа из периферических ганглиев автономной нервной системы), инкапсулированными нервными окончаниями: пластинча­тые тельца (тельца Фатера — Пачини), колбы Краузе, располо­женные на особых гломусных клетках (рецепторы каротидного и аортального клубочков). Механорецепторы реагируют на измене­ние давления в полых органах и сосудах, их растяжение и сжатие. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержании постоянства внутренней среды организма. Возбуж­дение хеморецепторов головного мозга может быть вызвано высво­бождением из его элементов гистамина, индольных соединений, изменением содержания в желудочках мозга СО2 и другими факто­рами. Рецепторы каротидных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН (в пределах 6,9— 7,6) и повышение напряжения СОг. Терморецепторы ответственны за начальный, афферентный этап процесса терморегуляции. Срав­нительно мало исследованными остаются пока осморецепторы: они обнаружены в интерстициальной ткани вблизи капилляров.

Проводящие пути и центры висцеральной системы. Прово­дящие пути висцеральной системы представлены в основном блуж­дающим, чревным и тазовым нервами. Блуждающий нерв передает


афферентные сигналы в ЦНС по тонким волокнам с малой ско­ростью от практически всех органов грудной и брюшной полости, чревный нерв — от желудка, брыжейки, тонкого отдела кишечника, а тазовый — от органов малого таза. В составе этих нервов имеются как быстро-, так и медленнопроводящие волокна. Импульсы от многих интероцепторов проходят по задним и вентролатеральным столбам спинного мозга.

Интероцептивная информация поступает в ряд структур ствола мозга и подкорковые образования. Так, в хвостатое ядро поступают сигналы от мочевого пузыря, в задневентральное ядро — от многих органов грудной, брюшной и тазовой областей. Исследование ней­ронов таламуса показало, что на многие из них конвергируют как соматические, так и вегетативные влияния. Важную роль играет гипоталамус, где имеются проекции чревного и блуждающего нер­вов. В мозжечке также обнаружены нейроны, реагирующие на раз­дражение чревного нерва.

Высшим отделом висцеральной системы является кора боль­шого мозга. Двустороннее удаление коры сигмовидной извилины резко и надолго подавляет условные реакции, выработанные на механические раздражения желудка, кишечника, мочевого пузыря, матки. В условнорефлекторном акте, начинающемся при стиму­ляции интероцепторов, участвуют лимбическая система и сенсомо-торные зоны коры большого мозга.

Висцеральные ощущения и восприятие. Возбуждение некоторых интероцепторов приводит к возникновению четких, локализованных ощущений (восприятия), как при растяжении стенок мочевого пу­зыря или прямой кишки. В то же время возбуждение интероцепто­ров сердца и сосудов, печени, почек, селезенки, матки и ряда других органов не вызывает ясно осознаваемых ощущений. Возникающие в этих случаях сигналы часто имеют подпороговый характер. И. М. Сеченов указывал на «темный, смутный» характер этих ощу­щений. Только при выраженном патологическом процессе в том или ином внутреннем органе эти сигналы доходят до сознания и часто сопровождаются болевыми ощущениями.

Изменение состояния внутренних органов, регистрируемое вис­церальной сенсорной системой, даже если оно не осознается чело­веком, может оказывать значительное влияние на его настроение, самочувствие и поведение. Это связано с тем, что интероцептивные сигналы доходят до высоких уровней ЦНС (вплоть до коры большо­го мозга), что может приводить к изменениям активности многих нервных центров, выработке новых условнорефлекторных связей. Особенно важна роль интероцептивных условных рефлексов в фор­мировании сложных цепных реакций, составляющих пищевое, по­ловое и другие формы поведения и являющихся важной частью жиз­недеятельности человека и животных.


Глава 15. ИНТЕГРАТИВНАЯ ДЕЯТЕЛЬНОСТЬ МОЗГА ЧЕЛОВЕКА

15.1. УСЛОВНОРЕФЛЕКТОРНАЯ ОСНОВА ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Кора большого мозга и ближайшие к ней подкорковые структуры являются высшим отделом ЦНС человека и животных. Основная функция этого отдела — осуществление сложных поведенческих реакций организма (поведения), составляющих основу высшей нервной деятельности.

15.1.1. Условный рефлекс. Механизм образования

Одним из основных элементарных актов высшей нервной дея­тельности является условный рефлекс. Биологическое зна­чение условных рефлексов заключается в резком расширении числа сигнальных, значимых для организма раздражителей, что обеспечи­вает несравненно более высокий уровень адаптивного (приспособи­тельного) поведения.

Условнорефлекторный механизм лежит в основе формирования любого приобретенного навыка, в основе процесса обучения. Струк­турно-функциональной базой условного рефлекса служат кора и подкорковые образования мозга.

Сущность условнорефлекторной деятельности организма сводит­ся к превращению индифферентного раздражителя в сигнальный, значащий, благодаря многократному подкреплению раздражения безусловным стимулом. Благодаря подкреплению условного стимула безусловным ранее индифферентный раздражитель ассоциируется в жизни организма с биологически важным событием и тем самым сигнализирует о наступлении этого события. При этом в качестве эффекторного звена рефлекторной дуги условного рефлекса может выступать любой иннервируемый орган. В организме человека и животных нет органа, работа которого не могла бы измениться под влиянием условного рефлекса. Любая функция организма в целом или отдельных его физиологических систем может быть модифи­цирована (усилена или подавлена) в результате формирования соот­ветствующего условного рефлекса.

Физиологический механизм, лежащий в основе условного реф­лекса, схематически представлен на рис. 15.1. В зоне коркового пред­ставительства условного стимула и коркового (или подкоркового)


представительства безусловного стимула формируются два очага возбуждения. Очаг возбуждения, вызванный безусловным стимулом внешней или внутренней среды организма, как более сильный (до­минантный) притягивает к себе возбуждение из очага более слабого возбуждения, вызванного условным стимулом. После нескольких повторных предъявлений условного и безусловного раздражителей между этими двумя зонами «проторяется» устойчивый путь движе­ния возбуждения: от очага, вызванного условным стимулом, к очагу, вызванному безусловным стимулом. В результате изолированное предъявление только условного стимула теперь приводит к реакции, вызываемой ранее безусловным стимулом.

В качестве главных клеточных элементов центрального механиз­ма образования условного рефлекса выступают вставочные и ассо­циативные нейроны коры большого мозга.

Для образования условного рефлекса необходимо соблюдение следующих правил: 1) индифферентный раздражитель (который должен стать условным, сигнальным) должен иметь достаточную силу для возбуждения определенных рецепторов; 2) необходимо, чтобы индифферентный раздражитель подкреплялся безусловным стимулом, причем индифферентный раздражитель должен либо не­сколько предшествовать, либо предъявляться одновременно с без­условным; 3) необходимо, чтобы раздражитель, используемый в качестве условного, был слабее безусловного. Для выработки услов­ного рефлекса необходимо также нормальное физиологическое состояние корковых и подкорковых структур, образующих цент­ральное представительство соответствующего условного и безуслов­ного стимулов, отсутствие сильных посторонних раздражителей, отсутствие значительных патологических процессов в организме.


При соблюдении указанных условий практически на любой стимул можно выработать условный рефлекс.

И. П. Павлов — автор учения об условных рефлексах как осно­ве высшей нервной деятельности первоначально предполагал, что условный рефлекс образуется на уровне кора — подкорковые об­разования (временная связь замыкается между корковыми нейро­нами в зоне представительства индифферентного условного сти­мула и подкорковыми нервными клетками, составляющими цент-


ральное представительство безусловного раздражителя). В более поздних работах И. П. Павлов образование условнорефлекторной связи объяснял образованием связи на уровне корковых зон пред­ставительства условного и безусловного стимулов.

Последующие нейрофизиологические исследования привели к разработке, экспериментальному и теоретическому обоснованию нескольких различных гипотез об образовании условного рефлекса (рис. 15.2). Данные современной нейрофизиологии указывают на возможность разных уровней замыкания, формирования условно-рефлекторной связи (кора — кора, кора — подкорковые образо­вания, подкорковые образования — подкорковые образования) при доминирующей роли в этом процессе корковых структур. Очевидно, физиологический механизм образования условного рефлекса пред­ставляет собой сложную динамическую организацию корковых и подкорковых структур мозга (Л. Г. Воронин, Э. А. Асратян, П. К. Анохин, А. Б. Коган).

Несмотря на определенные индивидуальные различия, условные рефлексы характеризуются следующими общими свойствами (приз­наками):

1. Все условные рефлексы представляют собой одну из форм приспособительных реакций организма к меняющимся условиям среды.

2. Условные рефлексы относятся к категории приобретаемых в ходе индивидуальной жизни рефлекторных реакций и отличаются индивидуальной специфичностью.

3. Все виды условнорефлекторной деятельности носят сигналь­ный предупредительный характер.

4. Условнорефлекторные реакции образуются на базе безуслов­ных рефлексов; без подкрепления условные рефлексы со временем ослабляются, подавляются.


Дата добавления: 2019-02-13; просмотров: 1211; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!