Методы исследования энергообмена



10.2.1.1. Прямая калориметрия

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Био­калориметр представляет собой герметизированную и хорошо теп­лоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере че­ловеком или животным, нагревает циркулирующую воду. По коли-


честву протекающей воды и изменению ее температуры рассчиты­вают количество выделенного организмом тепла.

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Схема биокалориметра приведена на рис. 10.1. Продуцируемое организмом человека тепло измеряют с помощью термометров (1,2) по нагреванию воды, протекающей по трубкам в камере. Количество протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекают из камеры и прогоняют через баки с серной кислотой (6 и 8) — для поглощения воды и с натронной известью (7) — для поглощения СО2. O2 подают в ка­меру из баллона (10) через газовые часы (11). Давление воздуха в камере поддерживают на постоянном уровне с помощью сосуда с резиновой мембраной (9).

10.2.1.2. Непрямая калориметрия

Методы прямой калориметрии очень громоздки и сложны. Учи­тывая, что в основе теплообразования в организме лежат окис­лительные процессы, при которых потребляется 02 и образуется СОг, можно использовать косвенное, непрямое, определение теп­лообразования в организме по его газообмену — учету количества


потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.

Для длительных исследований газообмена используют спе­циальные респираторные камеры (закрытые способы непрямой калориметрии) (рис. 10.2). Кратковременное определение газооб­мена в условиях лечебных учреждений и производства проводят более простыми некамерными методами (открытые способы кало­риметрии).

Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воз­дух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого (рис. 10.3.). Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обсле­дуемый свободно вдыхает атмосферный воздух, а выдыхает воз­дух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Кислород, поглощаемый организмом, используется для окис­ления белков, жиров и углеводов. Окислительный распад 1 г каж­дого из этих веществ требует неодинакового количества О2 и со­провождается освобождением различного количества тепла. Как видно из табл. 10.2, при потреблении организмом 1 л О2 освобож­дается разное количество тепла в зависимости от того, на окисле­ние каких веществ О2 используется.


Таблица 10.2. Потребление кислорода и высвобождение тепла при окислении различных веществ в организме

 

Веществ о, Количество тепла, Количество Количество освобож-
окисляющееся освобождающееся потребляемого дающейся при окис-
в организме при окислении 1 г 02, л лении 1 л О2 энергии,
  вещества, кДж (ккал)   кДж (ккал)

Белки                   17,17(4,1)                0,966               19,26(4,60)

Жиры                   38,94(9,3)                2,019                 19,64(4,69)

Углеводы               17,17(4,1)                0,830               21,14(5,05)

Количество тепла, освобождающегося после потребления ор­ганизмом 1 л Ог, носит название калорического эквивалента кис­ лорода. Зная общее количество Ог, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, оки­слились в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2- Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

с6н12о6 + 6 о2 = 6 со2 + 6 н2о.

При окислении глюкозы число молекул образовавшегося С02 равно числу молекул затраченного (поглощенного) О2. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогад-ро — Жерара). Следовательно, дыхательный коэффициент (отно­шение СО2/О2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент бу­дет ниже единицы. При окислении жиров дыхательный коэффици­ент равен 0,7. Проиллюстрируем это на примере окисления три-пальмитина:

2 СзН5 (С15Н31СОО)з + 145 02 = 102 С02 + 98 Н20.

Отношение между объемами углекислого газа и кислорода сос­тавляет в данном случае:

102CO2/142O2=0.703

Аналогичный расчет можно сделать и для белка; при его окис­лении в организме дыхательный коэффициент равен 0,8. При сме­шанной пище у человека дыхательный коэффициент обычно ра­вен 0,85—089. Определенному дыхательному коэффициенту соот-


ветствует определенный калорический эквивалент кислорода, что видно из табл. 10.3.

Определение энергетического обмена у человека в покое ме­ тодом закрытой системы с неполным газовым анализом. Относи­тельное постоянство дыхательного коэффициента (0,85—0,90) у людей при обычном питании в условиях покоя позволяет произво­дить достаточно точное определение энергетического обмена у че­ловека в покое, вычисляя только количество потребленного кисло­рода и беря его калорический эквивалент при усредненном ды­хательном коэффициенте.

Количество потребленного организмом кислорода определяют при помощи различных спирографов.

Определив количество поглощенного кислорода и приняв ус­редненный дыхательный коэффициент равным 0,85, можно рассчи­тать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал (см. табл. 10.3). Способ неполного газо­вого анализа благодаря своей простоте получил широкое распро­странение.

Дыхательный коэффициент во время работы. Во время интен­сивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняет­ся тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После за­вершения работы дыхательный коэффициент в течение первых нескольких минут так называемого периода восстановления резко снижается до величин меньших, чем исходные, и только спустя 30—50 мин после напряженной работы обычно нормализуется. Эти изменения дыхательного коэффициента показаны на рис. 10.4.

Изменения дыхательного коэффициента после окончания рабо­ты не отражают истинного отношения между используемым в дан­ный момент кислородом и выделенной СО2. Дыхательный коэффи­циент в начале восстановительного периода повышается по сле­дующей причине: в мышцах во время работы накапливается молоч­ная кислота, на окисление которой во время работы не хватало О2 (это так называемый кислородный долг). Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов, присое­диняя основания. Благодаря этому количество выделенного СОг


больше количества СОг, образовавшегося в данный момент в тка­нях. Обратная картина наблюдается в дальнейшем, когда молоч­ная кислота постепенно исчезает из крови. Одна часть ее окисляется, другая ресинтезируется в гликоген, а третья выделяется с мочой и потом. По мере уменьшения количества молочной кислоты осво­бождаются основания, которые до того были отняты у гидрокарбо­натов. Эти основания вновь связывают СОг и образуют гидрокар-бонаты, поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови СО2, по­ступающей из тканей.

10.2.1.3. Исследование валового обмена

Длительное (на протяжении суток) определение газообмена дает возможность не только найти теплопродукцию организма, но решить вопрос о том, за счет окисления каких питатель­ных веществ шло теплообразование. Рассмотрим это на при­мере.

Допустим, что обследуемый человек за сутки использовал 654,141 л O2 и выделил 574,180 л СОг. За это же время с мочой выделилось 16,8 г азота и 9,019 г углерода.

Количество белка, распавшегося в организме, определяем по азоту мочи. Так как 1 г азота содержится в 6,25 г белка, то, сле­довательно, в организме распалось 16,8*6,25= 105 г белка. На-


ходим количество углерода белкового происхождения. Для этого определяем количество углерода в распавшемся белке. Так как в белках содержится около 53 % углерода, то, следовательно, в рас­павшемся белке его было: (105*53)/100= 55,65 г. На образование С02

затрачено количество углерода, равное разности между количест­вом углерода в распавшемся белке и количеством углерода, выде­лившегося с мочой, 55,65 л — 9,0191 л = 46,63 л СОг. Определяем объемное количество СОг белкового происхождения, выделенного через легкие, исходя из того, что из 1 грамм-молекулы углерода

(12г) образуется 22,4л СO2:(46.65*22.4)/12= 87,043л С02. Далее,

исходя из дыхательного коэффициента, равного для белков 0,8, находим количество 02, затраченного на окисление белков:

О2 = 87.043/0.8=108,8 л. По разности между количеством всего по-

глощенного О2 и количеством Ог, затраченного на окисление бел­ков, находим количество Ог, затраченное на окисление углеводов и жиров: 654,141л—108,8 л = 545,341 л 02. По разности между количеством всего выделившегося СОг и количеством СОг белко­вого происхождения, выделившегося легкими, находим количест­во СОг, образовавшегося при окислении углеводов и жиров: 574,18 л — 87,043 л = 487,137 л С02. Определяем количество угле­водов и жиров, окислившихся в организме обследуемого за сутки. На основании того, что при окислении 1 г жира потребляется 2,019 л 02 и образуется 1,431 л С02, а при окислении 1 г углеводов потребляется 0,829 л Ог и столько же (0,829 г) образуется С02 (ДК для углеводов равен 1), составляем уравнение, приняв за х количество жира, а за у — количество углеводов, окисленных в организме. Решив систему уравнений с двумя неизвестными, по­лучим:

2,019 х + 0,829 у = 545,341 1,431 х + 0,829 у = 487,137

0,588 х = 58,204

х = 99 г жира

Находим количество углеводов, окисленных в организме, под­ставляя значение х в любое из уравнений:

2,01 * 999 + 0,829 у = 545,341

у= 417 г углеводов

Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная коли­чество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 10.2), нетрудно рассчитать общую теплопродукцию ор­ганизма за сутки:

105* 4,1 + 99* 9,3 + 417* 4,1=3061 ккал (12,81 кДж).


Основной обмен

Интенсивность окислительных процессов и превращение энер­гии зависят от индивидуальных особенностей организма (пол, воз­раст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внут­ренних органов — печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и т. д.).

Для определения присущего данному организму уровня окис­лительных процессов и энергетических затрат проводят исследо­вание в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную ра­боту, прием пищи, влияние температуры окружающей среды. Энерготраты организма в таких стандартных условиях получили название основного обмена.

Энерготраты в условиях основного обмена связаны с поддер­жанием минимально необходимого для жизни клеток уровня оки­слительных процессов и с деятельностью постоянно работающих органов и систем — дыхательной мускулатуры, сердца, почек, пе­чени. Некоторая часть энерготрат в условиях основного обмена связана с поддержанием мышечного тонуса. Освобождение в ходе всех этих процессов тепловой энергии обеспечивает ту теплопро­дукцию, которая необходима для поддержания температуры те­ла на постоянном уровне, как правило, превышающем температуру внешней среды.

Для определения основного обмена обследуемый должен нахо­диться: 1) в состоянии мышечного покоя (положение лежа с рас­слабленной мускулатурой), не подвергаясь раздражениям, вызы­вающим эмоциональное напряжение; 2) натощак, т. е. через 12— 16 ч после приема пищи; 3) при внешней температуре «комфорта» (18—20 °С), не вызывающей ощущения холода или жары.

Основной обмен определяют в состоянии бодрствования. Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8—10 % ниже, чем в состоя­нии покоя при бодрствовании.

Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в кило­джоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверх­ности тела за 1 ч или за одни сутки.

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.

Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина основ-


ного обмена человека в возрасте 20—40 лет сохраняется на до­вольно постоянном уровне. В пожилом возрасте основной обмен снижается.

Согласно формуле Дрейера, суточная величина основного об­мена в килокалориях (Я) составляет:

H = w /( K * A ^0.1333)

где W — масса тела, г; А — возраст человека; К — константа, равная для мужчины 0,1015, а для женщины — 0,1129.

Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.

Определение основного обмена, согласно этим таблицам, у здоровых людей нормального телосложения дают приблизительно верные (ошибка 5—8 %) величины затраты энергии. Несоразмер­но высокие данные для определенной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы. Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

10.2.4. Правило поверхности

Если пересчитать интенсивность основного обмена на 1 кг мас­сы тела, то окажется, что у теплокровных животных разных ви­дов (табл. 10.4.) и у людей с разной массой тела и ростом она весьма различна. Если же произвести перерасчет интенсивности основного обмена на 1 м2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко.

Согласно правилу поверхности тела, затраты энергии тепло­кровными животными пропорциональны величине поверхности тела.

Ежедневная продукция тепла на 1 м2 поверхности тела у че-


ловека равна 3559 — 5234 кДж (850—1250 ккал), средняя цифра для мужчин — 3969 кДж (948 ккал).

Для определения поверхности тела R применяется формула:

R = К * масса тела2/3.

Эта формула выведена на основании анализа результатов пря­мых измерений поверхности тела. Константа К у человека рав­на 12,3.

Более точная формула предложена Дюбуа:

R= W0,2450.725*71,84,

где W — масса тела в килограммах, Я — рост в сантиметрах.

Результат вычисления выражен в квадратных сантиметрах. Правило поверхности верно не абсолютно. Как показано выше (см. табл. 10.4), оно представляет собой лишь правило, имеющее известное практическое значение для ориентировочных расчетов освобождения энергии в организме.

Об относительности правила поверхности свидетельствует тот факт, что у двух индивидуумов с одинаковой поверхностью тела интенсивность обмена веществ может значительно различаться. Уровень окислительных процессов определяется не столько тепло­отдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния орга­низма, которое обусловлено деятельностью нервной, эндокринной и других систем.


Дата добавления: 2019-02-13; просмотров: 700; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!