Дифференциальное уравнение конвективноготеплообмена



При конвективном теплообмене тепло распространяется одновременно теплопроводностью и конвекцией. Уравнение переноса тепла теплопроводностью , где  - это локальное изменение температуры неподвижного элемента среды. При конвективном переносе тепла среда движется и в данном случае изменение температуры элемента среды запишется:

. Т.о. дифференциальное уравнение конвективного переноса тепла имеет вид и называется уравнением Фурье- Кирхгофа:

( 13 )

Уравнение ( 11 )выражает распределение температур в движущейся жидкости. В данном уравнении t является функцией различных переменных, в том числе скорости и плотности жидкости. Поэтому уравнение (11) должно рассматриваться совместно с уравнениями движения Эйлера и уравнением неразрывности. Однако полученную систему уравнений аналитически решить невозможно. Поэтому для практического использования уравнение подобно преобразовывают с учетом условий однозначности, т.е. представляют в виде функции от критериев подобия.

Тепловое подобие

У поверхности твердого тела, находящегося в движущейся жидкости всегда имеется пограничный слой толщиной d через который тепло передается теплопроводностью в направлении перпендикулярном движению потока. Рассмотрим подобие граничных условий. По закону Фурье количество тепла проходящее в пограничном слое толщиной d через площадь dF за время d t составляет    .

 Количество тепла, проходящее от стенки в ядро потока, определяется по з.Ньютона

                         dQ = a dFd t D t ,   где D t = t ст - t ж.

 При стационарном режиме теплообмена количество тепла, проходящее через пограничный слой и ядро потока равны:

     = a dFd t ( t ст - t ж ) = a ( t ст - t ж ).

Для подобного преобразования разделим правую часть на левую и отбросим знаки математических операторов; d заменим определяющим размером (эль). Получим безразмерный критерий Nu = a / l -критерий Нуссельта. Критерий Нуссельта характеризует интенсивность теплообмена на границе раздела фаз.Nu - является мерой соотношения толщины пограничного слоя d и определяющего геометрического размера (если это труба, то ее диаметр).

Рассмотрим условия подобия в потоке. Возьмем уравнение Фурье-Кирхгофа    

ß                     ß                                ß

  (1)              (2)                   (3)

Разделим (1) на (3) получим безразмерный комплекс . Чтобы не оперировать с дробными числами, берут обратную величину  = F 0 - критерий Фурье - характеризует связь между скоростью изменения температурного поля, размерами и физическими характеристиками среды в нестационарных тепловых процессах.

Разделим (2) на (3) –получим критерий Пекле- характеризует отношение количеств тепла, распространяемых в потоке жидкости конвекцией и теплопроводностью. Критерий Pe может быть представлен как произведение Re*Pr = Pe; .

Критерий Прандтля Prхарактеризует поле теплофизических величин потока жидкости и находится только по теплофизическим параметрам жидкости . В тех случаях, когда теплообмен осуществляется в результате естественной конвекции, процесс характеризуется критерием Архимеда A r = (gl3/ n 2 )*( r - r 0 )/ r , где r , r 0 –плотности холодной и нагретой жидкости. Поэтому комплекс ( r - r 0 )/ r заменяют на b D t. Получают Критерий Грасгофа , ( где b - коэффициент объемного расширения жидкости,  - разность температур стенки и жидкости).  – характеризует гидродинамический режим потока жидкости в условиях естественной конвекции, происходящей под влиянием разности плотностей нагретой и холодной жидкости.


Дата добавления: 2019-02-12; просмотров: 170; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!