Другие распространенные схемы на ОУ



В начале главы я упоминал о том, что операционные усилители получили свое название потому, что применялись для моделирования математических операций.

Схема аналогового сумматора (рис. 12.5, а ) есть одна из таких классических схем. Представляет собой она обычный инвертирующий усилитель, на который подается несколько входных напряжений, – каждое от своего источника. Легко сообразить, что в этой схеме коэффициент усиления будет для каждого из входов определяться соотношением резистора обратной связи R1 и соответствующего входного резистора – так, как если бы остальных входов и не существовало. Потому сигнал на выходе будет равен (усиленной) сумме сигналов на входе (с противоположным знаком).

В простейшем случае, если все резисторы (включая и R1) равны между собой, то выходное напряжение будет равно просто сумме входных. Если же значения резисторов варьировать, то можно получить так называемую взвешенную сумму – когда каждый из входных сигналов вносит вклад в общее дело в соответствии с заданным ему коэффициентом. Кстати, если взять схему простого дифференциального усилителя (см. рис. 12.4, а ) и заменить в ней резистор R4 такой же многовходовой цепочкой, то получится неинвертирующий сумматор. А если то же самое проделать еще и на инвертирующем входе, то получим сумматор, в котором весовые коэффициенты могут иметь разные знаки. Сумматор был неотъемлемой частью систем моделирования дифференциальных уравнений, для решения которых операционные усилители в составе аналоговых машин изначально и использовались.

Второй необходимой составляющей таких машин был интегратор на ОУ, схема которого приведена на рис. 12.5, б . Этот интегратор, в отличие от интегрирующей RC‑цепочки из главы 5 , действительно осуществляет операцию интегрирования в корректной форме. Например, если подать на его вход постоянное напряжение (отрицательное), то напряжение на выходе будет линейно возрастать со скоростью Uвх /RC вольт в секунду (интеграл от константы есть прямая линия). Входной сигнал можно подать и на неинвертирующий вход, заземлив резистор R – получим неинвертирующий интегратор. Можно также объединить интегратор с сумматором – тогда интегрирование будет осуществляться по сумме входных напряжений с соответствующими весовыми коэффициентами. Интеграторы, как и сумматоры, используются и по сей день в различных схемах.

На рис. 12.5, в приведена любопытная схема, которая в зависимости от состояния ключа К меняет знак напряжения на выходе.

 

 

 

Рис. 12.5. Распространенные схемы на ОУ:

а – аналоговый сумматор, б – интегратор, в – повторитель/инвертор; г – источник тока

 

Если К замкнут, то это инвертирующий усилитель с коэффициентом усиления, равным 1. Если же ключ разомкнут, то схема превращается в повторитель – ведь потенциалы во всех точках схемы в этом случае должны быть равны. В качестве ключа очень удобно использовать, скажем, транзистор или малогабаритное электронное реле – тогда такая схема может пригодиться для автоматического изменения знака усиления при необходимости отобразить отрицательную часть диапазона напряжений на входе в положительную область. Подобная задача может возникнуть, скажем, для датчиков, показывающих температуру, – и выше нуля градусов Цельсия, и ниже его характеристика должна быть возрастающей, т. к. абсолютное значение величины температуры возрастает в обоих случаях, в то время как сам сигнал с выхода датчика меняется линейно в одну сторону.

Еще одна давно обещанная и очень полезная схема (рис. 12.5, г ) представляет собой почти идеальный источник тока с выходным сопротивлением, равным бесконечности. Здесь может использоваться однополярное питание, что и показано на схеме. Ток можно задавать как соотношением резисторов делителя R1‑R2, так и резистором R. Обратите внимание, что отрицательная обратная связь подается на неинвертирующий выход ОУ, – поскольку здесь применен полевой транзистор с n ‑каналом, и стабилизируется его стоковое напряжение, которое есть инверсия напряжения на затворе. Если взять транзистор с p ‑каналом, то его в этой схеме нужно подключить наоборот – стоком в направлении нагрузки, а обратную связь, снимаемую с истока, подавать нормально, на инвертирующий вход.

Для высокой стабильности тока в этой схеме требуется столь же высокая стабильность напряжения питания, поэтому если важна абсолютная величина тока, то резисторы приходится питать от отдельного прецизионного стабилизатора (не только делитель R1‑R2, но и цепь резистора R ). От характеристик транзистора стабильность тока почти никак не зависит, единственное требование – чтобы начальный ток стока превышал установленный выходной ток схемы. Если применить не полевой, а биполярный транзистор, то будет иметь место некоторая зависимость выходного тока от изменений базового тока транзистора (ибо коллекторный ток отличается от эмиттерного на величину тока базы), потому чаще в таких источниках применяют полевые транзисторы.

 

 

Аналоговый генератор

Еще в главе 2 я обещал, что нами будет построен генератор для домашней лаборатории. Вообще‑то их нам требуется два: цифровой (выдающий прямоугольные импульсы) и аналоговый (генератор синусоидальных колебаний). Объединять их в одной конструкции, как это чаще всего делают, неудобно, потому что синусоидальный генератор должен выдавать переменное напряжение с амплитудой в минус и в плюс, а цифровой – однополярное пульсирующее, т. е. от нуля до плюса питания. Поэтому цифровым генератором мы займемся в главе 16 , после изучения двоичных счетчиков, а пока сделаем аналоговый.

Принципиальная схема его приведена на рис. 12.6. Она выполнена по широко распространенной схеме генератора Вина – Робинсона. Для того чтобы генератор выдавал именно синусоидальные колебания, коэффициент усиления ОУ должен быть в этой схеме равен ровно 3 – если он меньше, то генератор просто не запустится, если больше – верхушки синусоид начнут обрезаться, и в пределе выходные колебания станут прямоугольными.

 

 

Рис. 12.6.  Схема лабораторного генератора синусоидальных колебаний

 

Разумеется, подбором компонентов установить коэффициент усиления с нужной точностью невозможно. Поэтому применяют хитрый метод – в обратную связь ставят элемент, сопротивление которого зависит от среднего значения напряжения на нем. Проще всего оказалось использовать для этой цели термозависимые резисторы. В нашем случае используется термистор, у которого зависимость сопротивления от выделяющейся мощности имеет отрицательный наклон. В результате при увеличении амплитуды напряжения на выходе генератора его сопротивление падает, и нужный коэффициент устанавливается автоматически. Можно использовать также обычную маломощную лампочку для карманного фонарика – только наклон зависимости у нее положительный, потому ее следует ставить вместо резистора R2, a R1 тогда оставить постоянным. Для того чтобы обратная связь с лампочкой работала, от ОУ может понадобиться достаточно большой выходной ток, и тогда следует добавить к нему умощняющий выходной каскад на транзисторе (например, как в лабораторном источнике на рис. 9.12). Есть и более тонкие способы стабилизации коэффициента усиления (скажем, с использованием полевого транзистора в обратной связи, см. [19]), но опыт показывает, что и этот старинный рецепт, еще времен господства ламповой схемотехники, прекрасно работает.

Схему по рис. 12.6 можно собрать всю сразу. Здесь можно использовать любой ОУ общего применения. Показанный на схеме сдвоенный ОУ типа 140УД20 представляет собой два знакомых нам μА741 (140УД7), размещенных в одном корпусе. С ними генератор будет приемлемо работать до частот в несколько десятков килогерц. Напряжения питания могут составлять от ±5 до ±20 В, удобно выбрать напряжение около ±7–8 вольт, т. к. большие амплитуды практически никогда не требуются. Термистор может быть любого типа, но не слишком большой по размерам, чтобы он разогревался малыми токами (например бусинковый отечественный СТ1‑19, СТЗ‑19 или импортный каплевидный B57861‑S близкого номинала).

Наладка будет заключаться в подборе резистора R2 под конкретный экземпляр термистора. Его нужно подобрать так, чтобы сигнал на выходе был чисто синусоидальным, без искажений. Частота регулируется сдвоенным резистором R3‑R4. При указанных на схеме номиналах минимальная частота получится около 30 Гц, а максимальная – около 1 кГц. Чтобы расширить диапазон частот, придется поставить сдвоенный переключатель на несколько положений и изменять им емкости конденсаторов. Удобно, например, подобрать сопротивление резисторов R5 и R6 так, чтобы диапазон частот составлял 30‑330 Гц, тогда, меняя с помощью переключателя емкости конденсаторов в десять раз (0,1 мкФ, 0,01 мкФ, 1 нФ), вы будете иметь перекрывающиеся диапазоны 30‑330, 300‑3300 и 3000‑33 000 Гц. Обратите внимание, что никакой особой подгонки по равенству номиналов резисторов и конденсаторов не требуется, схема будет работать при любых (в разумных пределах) соотношениях номиналов, и равенство здесь выбрано только из соображений удобства расчета. Амплитуда сигнала на выходе регулируется потенциометром (R7 на схеме), а чтобы иметь низкое выходное сопротивление, добавлен повторитель на втором ОУ из корпуса.

Немало других интересных применений ОУ вы можете найти в многочисленной литературе, например, в классических трудах [4, 11]. А мы на этом с рассмотрением принципов использования ОУ закончим и займемся конструированием практических схем.

 

 

Конструируем термостаты

Термостат, т. е. устройство для поддержания температуры, – простейшее техническое устройство из класса гомеостатов , т. е. систем, которые автоматически поддерживают значение некоей величины на заданном уровне. Яркий пример хорошо всем знакомого гомеостата – наш собственный организм, в котором непрерывно с высочайшей точностью поддерживаются оптимальные значения таких величин, как температура, концентрация кислорода в крови, уровень адреналина и прочих параметров, причем практически независимо от вашей воли. Эти системы продолжают работать до тех пор, пока вы живы. Многие болезни есть следствие или причина расстройств гомеостатических функций организма, типичный случай – простуда, при которой в том числе работа термостатирующей системы сдвигается таким образом, что температура начинает расти.

Ключевой особенностью всех гомеостатов является обязательное наличие отрицательной обратной связи, на что обратил внимание еще отец кибернетики Норберт Винер. Поэтому любой гомеостат можно в принципе свести к обобщенной блок‑схеме по рис. 12.2. На примере термостатов можно научиться создавать несложные регуляторы любой физической величины – все зависит от датчика и исполнительного механизма, – причем особо не вникая в сложнейшую теорию автоматического регулирования и управления.

Конструировать термостаты одновременно и просто, и сложно. В частности, со схемотехнической точки зрения термостаты конструировать проще, чем регуляторы других величин. Процесс нагревания очень инерционен, и любой нагревательный элемент, кроме уж совсем миниатюрных (вроде нагревателей в головках термопринтеров), является естественным фильтром низких частот, как мы видели в предыдущем разделе. Поэтому при конструировании термостатов, как правило, не возникают какие бы то ни было проблемы, связанные с фазовыми сдвигами и возможным переходом всей системы в автоколебательный режим, не нужно возиться со сложными схемами дифференциальных или интегральных регуляторов (для других величин это может быть далеко не так). Зато это же самое свойство процесса нагревания заставляет внимательнее относиться к собственно конструкции термостата – стоит расположить датчик в неподходящем месте или не обеспечить равномерное распределение тепла, й качество регулирования резко падает, вплоть до полной неработоспособности устройства.

 

 

Термостат вообще

На рис. 12.7 приведена типовая структурная схема термостата. Следует отметить, что для полноты картины в приведенной структурной схеме не хватает одного компонента – холодильного устройства. Термостат, который показан на схеме, может поддерживать температуру только выше температуры окружающей среды – в чем, впрочем, большинство практических задач в области техники и заключается. Введение холодильного агрегата не представляет никаких трудностей теоретически, но есть не всегда тривиальная задача практически, т. к. холодильник – сами знаете, насколько это громоздкая конструкция. Сейчас мы рассмотрим работу схемы без охлаждения, а затем поглядим, с какого бока туда можно пристроить холодильник, если вдруг это понадобится.

* * *

 

Заметки на полях

Интересно, что схема на рис. 12.7, кроме всего прочего, служит ярким примером упомянутого ранее положения о двойственности систем с обратной связью: за объект, подлежащий регулированию (на рис. 12.2 – верхний квадратик), здесь естественно принять среду, в которой мы поддерживаем температуру. В этом случае элементами обратной связи становится усилитель и остальные компоненты схемы. Но ничто нам не мешает – и с технической точки зрения это гораздо логичнее – рассматривать в качестве регулируемого объекта усилитель, и тогда наоборот, все остальное есть лишь элементы обратной связи для него! В том, что и тот, и другой подходы равнозначны, вы убедитесь далее.

 

* * *

 

 

Рис. 12.7. Обобщенная схема термостата:

1 – объект регулирования; 2 – нагреватель, 3 – теплоизоляция, 4 – датчик температуры; 5 – исполнительное устройство, 6  – источник питания; 7 – усилитель; 8 – задающее устройство

 

Итак, мы имеем некий объект регулирования (1), который условно показан на схеме, как бак с водой. Пусть сначала – сразу после включения системы – температура в нем ниже необходимой. Предположим, что датчик температуры (4) имеет характеристику с положительным наклоном – т. е. сигнал на нем увеличивается с увеличением температуры. Выходной сигнал этого термодатчика представляет собой напряжение в некотором диапазоне, которое поступает на инвертирующий вход операционного усилителя (7). Конечно, не все датчики температуры выдают непосредственно напряжение на выходе, чаще у них от температуры зависит какой‑нибудь физический параметр (например, сопротивление), но преобразовать этот параметр в напряжение обычно несложно, и мы еще этим будем заниматься.

Усилитель сравнивает сигнал датчика с сигналом, поступающим с задающего устройства (8), – так называется устройство, которым мы можем устанавливать нужную нам температуру в системе. В простейшем случае это переменный резистор, включенный по схеме потенциометра, с которого можно снимать напряжение в таком диапазоне, чтобы его крайние значения соответствовали сигналу с датчика при крайних значениях нужного нам диапазона температур.

Поскольку в начальный момент температура, как мы договорились, меньше заданной, то напряжение с термодатчика ниже напряжения сигнала с задающего устройства, и на выходе усилителя будет большое положительное напряжение насыщения выхода ОУ (меньшее напряжение поступает на инвертирующий вход, потому выход положителен). Это напряжение приведет в действие исполнительное устройство, которое на схеме условно показано в виде контактов реле, – в простейшем случае это и есть реле, электромеханическое или электронное, которое своими контактами подает напряжение от источника питания (например, прямо от бытовой сети) на нагреватель.

Обратная связь для усилителя замыкается через сам объект: когда нагреватель достаточно прогреет воду в баке, сигнал с термодатчика превысит установленный с помощью задающего устройства уровень, напряжение на выходе усилителя упадет до нуля (или даже станет отрицательным – если питание усилителя двухполярное), исполнительное устройство снимет питание с нагревателя, и вода начнет остывать, пока температура датчика вновь не достигнет заданного значения – теперь уже «сверху», т. е. со стороны больших значений температуры, чем заданная.

Вы не поверите, сколько подводных камней кроется в такой, казалось бы простой и понятной системе! Начнем с того общего положения, что термостат всегда поддерживает температуру в той, и только в той точке, в которой установлен датчик . Поэтому если вода в нашем баке плохо перемешивается, то обязательно возникнет ситуация локального перегрева – вплоть до того, что вокруг нагревателя вода может уже закипеть, а датчик так и останется холодным. Датчик при этом еще может быть установлен «не в том месте», например, слишком близко ко дну, в то время как теплая вода от нагревателя будет подниматься вверх. А если датчик установить, наоборот, слишком близко к нагревателю и, тем более, прямо над ним, в потоке поднимающейся теплой воды, то все произойдет наоборот – система сработает слишком рано, когда вода вокруг еще холодная.

Поэтому первое условие хорошего регулирования – как можно более интенсивное перемешивание среды, в которой температура регулируется. На рис. 12.7 для этой цели изображена мешалка, но, конечно, перемешивать можно и другими способами. Во многих случаях – когда это возможно – бак следует также укутывать теплоизоляцией, а стенки для более равномерного распределения температур делать металлическими. Обратите внимание, что системы климат‑контроля в автомобилях, которые устроены в принципе точно так же, как описано (только среда – воздух, а не вода), для эффективной работы требуют минимума притока внешнего воздуха (фактически та же теплоизоляция) и интенсивного его перемешивания.

Но и это далеко не все – напомним, что тепловые процессы крайне инерционны. И нагреватель, и датчик, и масса воды, и стенки бака обладают некоей теплоемкостью и, соответственно, тепловой инерцией, которая на много порядков превышает время срабатывания электронных устройств. Процессы нагревания и остывания протекают во времени примерно так же, как процесс заряда‑разряда конденсатора через резистор (см. рис. 5.7), соответственно эти процессы также можно охарактеризовать аналогом постоянной времени RC – она так и называется тепловой постоянной времени . В данном случае наибольшая постоянная времени будет у системы «стенки бака – вода». Но нас даже больше интересует тепловая постоянная нагревателя (тепловую инерцию датчика пока учитывать не будем – обычно она много меньше остальных).

Что будет происходить в реальной системе? Когда температура, по мнению датчика, достигла заданной, электронные компоненты послушно выключат питание нагревателя. Но он еще некоторое время будет греть воду, отдавая туда тепло, запасенное за счет его собственной теплоемкости. Чем массивнее нагреватель, тем дольше будет длиться этот процесс. Мало того, это остаточное время также зависит от мощности нагревателя – чем он мощнее, тем также количество лишнего отданного тепла будет больше, потому что выше будет начальная температура внутри нагревателя. Произойдет перерегулирование – нагреватель давно выключен, а температура некоторое время продолжает расти. В точности то же самое, но в обратную сторону, повторится при остывании системы – нагреватель включится, но ему нужно некоторое время, чтобы прогреться, и все это время температура будет продолжать падать.

Отсюда второе условие хорошего регулирования – масса нагревателя и его мощность должны быть минимально возможными, т. е. такими, чтобы при наихудших условиях (при максимальной разнице между установленным значением температуры и окружающей средой) только‑только суметь «победить» потери тепла через стенки бака и через поверхность воды. На самом деле это положение в полной мере действительно только в нашей простейшей схеме релейного регулирования (нагреватель или выключен, или включен полностью).

Можно ослабить требования, если регулировку производить другим способом – плавным изменением мощности пропорционально разнице температур. Схема такого пропорционального регулятора значительно сложнее простой релейной, но и требуется такой подход лишь в особо точных профессиональных термостатирующих устройствах. В быту практически всегда можно обойтись релейным регулированием.

Естественно, само по себе регулирование будет происходить только в определенных пределах температуры окружающей среды. Если температура среды выше или равна установленной, то бак никогда не остынет, а нагреватель никогда не включится, и система будет просто иметь температуру окружающей среды. Наоборот, при очень низкой температуре среды у нас может не справиться нагреватель – потери тепла превзойдут его мощность.

Холодильник в этой системе может понадобиться, если нам нужно поддерживать температуру ниже температуры окружающей среды или независимо от нее (в рассмотренном случае роль холодильника играет окружающая среда). Как же его сюда при необходимости пристроить? Это несложно – достаточно разместить охлаждающий агрегат в баке, а включать его, например, в противоположной фазе с нагревателем: когда нагреватель включен, холодильник выключен, и наоборот. Но холодильник всегда имеет очень большую инерционность, и плавное регулирование мощности (холодопроизводительности) для него недоступно. Поэтому чаще поступают иначе: холодильник нередко не выключают вовсе, а мощность нагревателя подбирают так, чтобы он в любом случае «побеждал» холодильник. При этом, увы, подавляющая часть потребляемой энергии уходит на взаимную «борьбу» холодильника и нагревателя, т. е. с точки зрения целевого назначения совершенно впустую. Зато качество регулирования оказывается на высоте.

Если же вообще нагреватель убрать, а холодильный агрегат включать через регулятор по рис. 12.7 (естественно, где‑то инвертировав фазу – холодильник должен включаться при превышении заданной температуры, а не при снижении ее), мы получим в точности схему обычного домашнего холодильника – он ведь и предназначен для того, чтобы поддерживать температуру всегда ниже, чем температура окружающей среды, и точно так же перестанет что‑либо регулировать, если эта температура выйдет за пределы диапазона регулировки. Если холодильник выставить на мороз, то он никогда не нагреется, а если поставить в горячем цеху (или просто открыть дверцу), то никогда не выключится.

Вооружившись таким пониманием процессов, происходящих в термостатах, приступим к практическому их проектированию.

 

 


Дата добавления: 2019-02-12; просмотров: 270; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!