Особенность белкового обмена в эритроцитах



В зрелом эритроците белки не синтезируются, т.к. у него нет рибосом, ЭПР, аппарата Гольджи и ядра. Однако в цитоплазме синтезируется пептид глутатион.

Биосинтез глутатиона осуществляется в 2 стадии:

1). АТФ + глутаминовая кислота + цистеин ® γ-глутамилцистеин + АДФ + Фн

2). АТФ + γ-глутамилцистеин + глицин ® глутатион + АДФ + Фн

Первая стадия катализируется γ-глутамилцистеинсинтетазой, вторая стадия – глутатионсинтетазой.

Катаболизм белков в эритроците неферментативный. Белки разрушаются и инактивируются в эритроците под действием неблагоприятных факторов: СРО, гликозилирования, взаимодействия с тяжелыми металлами и токсинами.

Особенность обмена нуклеотидов в эритроцитах

В зрелом эритроците:

1. из ФРПФ (из рибозо-5ф) и аденина может синтезироваться АМФ.

2. АМФ с участием АТФ превращается в АДФ.

3. В реакциях субстратного фосфорилирования (гликолиз) АДФ превращается в АТФ.

4. В гликолизе НАД+ восстанавливается в НАДН2, который используется для регенерации гемоглобина из метгемоглобина.

5. В ПФШ НАДФ+ восстанавливается в НАДФН2, который используется для функционирования антиоксидантной системы.

Особенность липидного обмена в эритроцитах

В зрелом эритроците липиды не синтезируются, однако эритроцит может обмениваться липидами с липопротеинами крови. Катаболизм липидов неферментативный, повреждение и разрушение липидов происходит в реакция ПОЛ.

Особенность углеводного обмена в эритроцитах

В зрелых эритроцитах углеводы не синтезируются. Катаболизм углеводов происходит на 90% в анаэробном гликолизе и на 10% в ПФШ, основной субстрат – глюкоза. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Наряду с глюкозой эритроцит может использовать фруктозу, маннозу, галактозу, а также инозин, ксилит и сорбит.

В процессе гликолиза с участием фосфоглицераткиназы и пируваткиназы образуется АТФ, а с участием 3-ФГА дегидрогеназы восстанавливается НАДН2. В окислительной стадии ПФШ с участием глюкозо-6-фосфат дегидрогеназы и 6-фосфоглюконат дегидрогеназы восстанавливается НАДФН2.

Конечный продукт анаэробного гликолиза лактат выходит в плазму крови и направляется преимущественно в печень для глюконеогенеза.  

Энергетический обмен в эритроцитах

Образующаяся в анаэробном гликолизе АТФ используется для функционирования транспортных АТФаз, для работы цитоскелета и синтеза некоторых веществ. За 1 час все эритроциты крови потребляют 0,7г глюкозы.

Генетический дефект любого фермента гли­колиза приводит к уменьшению образования АТФ, в результате падает актив­ность Na++-АТФ-азы, повышается осмоти­ческое давление и возникает осмотический шок.

Для оценки эффективности работы транспортных систем определяют осмотическую резистентность эритроцитов. Осмотическая резистентность эритроцитов в свежей крови в норме составляет 0,20-0,40% NaCl.

Обезвреживание активных форм кислорода в эритроцитах

Высокое содержание О2 в эритроцитах является причиной образования большого количества активных форм кислорода. Постоянным источником активных форм кислорода в эритроцитах является неферментативное окисление гемоглобина в метгемоглобин: 1). Hb (Fe2+) ® Met Hb (Fe3+) +e-    2). e- + O2 → О2

Также СРО в эритроците стимулируют различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин.

Образующиеся активные формы кислорода запускают реакции СРО, которые приводят к разрушению липидов, белков, углеводов и др. органических молекул и являются причиной старения и гемолиза эритроцита.

Для сдерживания СРО в эритроците функционирует ферментативная антиоксидантная система. Для ее работы необходим глутатион и НАДФН2.

Супероксиддисмутаза (Cu2+ и Zn2+) превращает супероксидные анионы в перекись водорода: 2О2 + 2H+ →  H2O2+ O2

Каталаза - геминовый фермент, разрушает перекись водорода до воды и кислорода: 2Н2О2 →  H2O+ O2

Глутатионпероксидаза (селен) при окислении глутатиона разрушает перекись водорода и гидроперекиси  липидов до воды:

Н2О2 + 2 GSH → 2 Н2О + G-S-S-G.

Глутатионредуктаза восстанавливает окисленный глутатион с участием НАДФН2:

GS-SG + НАДФН2 → 2 GSH + НАДФ+.

Недостаток глутатиона и НАДФН2 в эритроцитах приводит к снижению АОА, активации ПОЛ и может стать причиной  гемолитической анемии. Различные окислители - нитраты, сульфаниламиды, противомалярийное лекарство примахин, усиливают гемолиз эритроцитов.

Дефицитглутатиона может быть обусловлен действием токсических веществ, например ионами тяжелых металлов или наследственным недостатком глутатионредуктазы.

Дефицит НАДФН2 возникает при наследственной недостаточности  (аутосомно-рецессивный тип) первого фермента ПФШ глюкозо–6–фосфатдегидрогеназы. Не менее 100 млн человек являются носителями около 3000 генетических дефек­тов глюкозо-6-фосфатдегидрогеназы.

Для оценки эффективности работы антиоксидантных систем определяют перекисную резистентность эритроцитов.

 

Обмен метгемоглобина

В течение суток до 3% гемоглобина может спонтанно окисляться в метгемоглобин:

Hb (Fe2+) ® Met Hb (Fe3+) +e-

Восстановление метгемоглобина до гемоглобина осуществляет метгемоглобинредуктазная система. Она состоит из цитохрома b5 и цитохром b5 редуктазы (флавопротеин), донором водорода служит НАДН2, образующийся в гликолизе.

1). Цитохром b5  восстанавливает Fe3+ метгемоглобина в Fe2+ гемоглобина:

MetHb(Fe3+) + цитb5 восст → Hb(Fe2+) + цит b5 окисл

2). Окисленный Цитохром b5  восстанавливается цитохром b5 редуктазой:

цит b5 окисл + НАДН2 → цитb5 восст + НАД+

Восстановление метгемоглобина может осуществляться также неферментативным путём, например, за счёт витамина В12, аскорбиновой кислоты или глутатиона.

У здорового человека концентрация метгемоглобина в крови не превышает 1%.

Генетический дефект ферментов гли­колиза и метгемоглобинредуктазной системы приводит к накоп­лению метгемоглобина и увеличению образо­вания активных форм кислорода. Активные формы кислорода вызывают образование дисульфидных мостиков между протомерами метгемоглобина, что приводит к их агрегации с образованием телец Хайнца. Последние способствуют разрушению эритроцитов при попадании их в мелкие капилляры. Накопление метгемоглобина в крови из-за нарушения транспорта кислорода ведет к гипоксии.

Дифосфоглицератный шунт

Кроме традиционного ПФШ, у гликолиза эритроцитов многих млекопитающих есть свой специфический шунт - 2,3–дифосфоглицератный.

В эритроцитах имеется дифосфоглицератмутаза, которая позволяет обходить в гликолизе фосфоглицераткиназную реакцию. Дифосфоглицератмутаза катализирует превращение 1,3–ФГК в 2,3–ФГК. Ее стимулирует дефицит кислорода. В условиях гипоксии до 20% глюкозы идет по этому пути. Образующаяся 2,3–ФГК встраивается в молекулу гемоглобина и аллостерически уменьшает его сродство к кислороду. Кривая диссоциации оксигемоглобина смещается вправо, что способствует переходу кислорода из оксигемоглобина в ткани.

Под действием 2,3–дифосфоглицератфосфатазы (принято считать, что этой активностью обладает фосфоглицератмутаза) 2,3–ФГК превращается в 3–ФГК, которая возвращается в реакции гликолиза.

При 2,3–дифосфоглицератном шунте в гликолизе не синтезируется АТФ, а свободная энергия  1,3–ФГК, рассеивается в форме теплоты. В этом может заключаться определённое преимущество, поскольку даже в тех случаях, когда потребности в АТФ минимальны, гликолиз может продолжаться.

 

Образование эритроцитов

Эритроциты, так же как и другие клетки крови, образуются из полипотентных стволовых клеток костного мозга. Стволовая клетка превращается в эритроцит за две недели.

Размножение и превращение начальной клет­ки эритроидного ряда в унипотентную стиму­лирует ростовой фактор интерлейкин-3 (цитокин), который синтезируется Т-лимфоцитами и клетками костного мозга.

Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует гормон эритропоэтин, который синтезируется в почках. Образование эритропоэтина в почках стимулирует недостаток кислорода. Хроническая почечная недоста­точность подавляет образова­ние эритропоэтина, что ведет к развитию анемии.

На стадии эритробласта происходят интенсивный синтез гемог­лобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркули­рующие в крови ретикулоциты лишаются ри­босом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.

 


Дата добавления: 2019-02-12; просмотров: 269; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!