Реализация генетической информации в клетке



Реализация генетической информации — процесс, происходящий внутри каждой живой клетки, во время которого генетическая информация, записанная в ДНК, воплощается в биологически активных веществах — РНК и белках. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов. «Молекулярная догма» РНК-ДНК-РНК-белок. Стратегия реализации генетической информации вирусов включает три известные стадии — транскрипцию процесс синтеза мРНК, трансляцию процесс синтеза белка на мРНК и репликацию процесс самовоспроизведения генетического материала на основе матричного синтеза. При успешном протекании всех трех стадий реализации генетической информации вируса в клетке на фоне подавления синтеза ее собственных макромолекул наблюдается формирование пула вирусных макромолекул — белков капсида, гликопротеинов суперкапсида, геномных нуклеиновых кислот. Это является пусковым механизмом следующего этапа репликативного цикла вируса — сборки морфогенеза вирионов.

 

Классификация генов: структурные и регуляторные. Регуляция экспрессии генов прокариот по типу индукции и корепрессии (модель оперона)

Ген— структурно-функциональная единица генетического материала, наследственный фактор, который можно условно представить как отрезок молекулы ДНК, включающий нуклеотидную последовательность, в которой закодирована первичная структура полипептида белка либо молекулы транспортной или рибосомной РНК, синтез которых контролируется этим геном.
По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра, ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями. По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены — последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена.
Регуляция: Прокариоты — это простейшие одноклеточные организмы, которым для того, чтобы выжить, требуется лишь благоприятная химическая среда.
Экспрессия начинается и заканчивается или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, подчиняющиеся согласованной регуляции, в геноме часто бывают сцеплены и транскрибируются с промотора, находящегося на 5-конце такой группы генов кластера, в виде единственной молекулы РНК, называемой полицистронным или полигенным транскриптом. Группа координированно экспрессирующихся генов называется опероном. Гены, кодирующие несколько родственных функций, не всегда образуют единый оперон. Так, гены, кодирующие 30S- и 50S-рибосомные белки, организованы во множественные оперoны, в чей состав иногда входят гены, кодирующие другие белки, которые участвуют в транскрипции иили трансляции. Как правило, отдельные опероны, кодирующие родственные функции, имеют одинаковые или сходные регуляторные последовательности и поэтому реагируют на определенный регуляторный сигнал сходным образом.

 

Регуляция активности генов у эукариот

Регуляция экспрессии генома у эукариот осуществляется на нескольких уровнях:
- на уровне структурной организации генома претранскрипционный контроль Геном эукариот содержит много нуклеотидов, но лишь 2-5% ДНК используется для кодировки белков. Наличие у ДНК не только кодирующих, но и регуляторных сигнальных участков, значительного количества сайтов, которые не транскрибируются, составляет особенность генома эукариот. Обеспечивают стабильную экспрессию в течение жизни клетки одних генов и торможения экспрессии других.
- на уровне транскрипции. Существует транскрипционная и посттранскрипционная регуляция. Регулироваться может сам процесс транскрипции, дозревание мРНК процессинг, транспорт и деградация мРНК. В участках гетерохроматина ДНК упакована очень плотно и недоступна для транскрипции, тогда как в участках эухроматина, имеющего рыхлую упаковку, доступна для РНК-полимеразы. В разных типах клеток в область эухроматина попадают различные гены, а это означает, что в разных тканях транскрибируются различные гены.
- на уровне трансляции – через фосфорилирование-дефосфорилирование белковых факторов трансляции.
- на пострансляционном уровне – через регуляцию процессов формирования белковой молекулы, ее транспорта, активности и деградации.

 

Генетика

 

23.Генный уровень организации наследственного материала

Геном человека — это полная генетическая система, ответственная за происхождение, развитие, воспроизводство и наследование всех структурных и функциональных особенностей организма. Структурной и функциональной единицей генома является ген. Генные взаимодействия происходят на нескольких уровнях: непосредственно в генетическом материале клеток, между и РНК и образующимися полипептидами в процессе биосинтеза белка, между белками-ферментами одного метаболического цикла. Взаимодействие аллельных генов обусловливает доминантное, рецессивное, кодоминантное наследование признаков, явление неполного доминирования. При перечисленных формах доминирования результаты взаимодействия генов проявляются во всех соматических клетках организма. При эпистазе модулирующее действие заключается в подавлении одними генами функции других генов. Гены, оказывающие такой эффект, называются ингибиторами или супрессорами. Гены, усиливающие функции других генов, называются интенсификаторами. Экспрессивность и пенетрантность отражают зависимость функции гена от особенностей генотипа и проявляются в процессе развития признака. Следовательно, в основе этих генетических явлений может лежать колебание активности самих генов, характер взаимодействия продуктов генной активности, особое сочетание условий среды в онтогенезе организма.


Дата добавления: 2019-02-12; просмотров: 1044; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!