Характеристика монооахаридов и дисахаридов. 1 страница



Химический состав и природа белков. Уже первые химические анализы белков показали, что, независимо от источника получения, белковые вещества содержат, кроме С, О и Н, обязательно N и обычно некоторое количество S. Все эти элементы содержатся в белках в определенных пропорциях Элементарный анализ различных белков при пересчете на сухое вещество дает в среднем (в процентах) углерода 50,6—54,5 кислорода 21,5—23,5 водорода 6,5—7,3, азота 15,0—17,6, серы 0,3—2,5. Ввиду того, что белки оказались такими органическими соединениями, в состав которых обязательно входит в определенном количестве азот, для установления количества белков в различных биологических объектах стали применять определение в них азота (напр. по методу Кьельдаля). Полученное в рез-те анализа количество азота умножают на 6,25, учитывая, что азота в белке содержится в среднем 16% (100 : 16 = 6,25). Подобными анализами было установлено содержание белков в различных животных и растительных тканях. Белки - высокомолекулярные азотосодержащие органические вещества молекулы которых построены из остатков аминокислот. Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). Незаменимые аминокислоты: Вал, лей, иле, фен, три, мет, тре, лиз. Две ам. к-ты аргинин и гистидин частично синтезируются в организме человека, но этот синтез не покрывает потребности в них, поэтому они относятся к условно заменимым ам.к. Все остальные аминокислоты считаются заменимыми, однако необходимо отметить, что заменимость тирозина и цистеина достаточно условна , поскольку для их синтеза используются незаменимые фенилаланин и метионин. Поэтому при недостатке этих аминокислот автоматически увеличивается потребность в заменимых фенилаланине и метионине. Для изучения аминокислотного состава белков пользуются сочетанием (или одним из них) кислотного (НСl), щелочного (Ва(ОН)2) и реже ферментативного гидролиза. Установлено, что при гидролизе чистого белка, не содержащею примесей, освобождается 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии или в виде коротких пептидов или комплексов с другими органическими веществами. α-аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у α -углерода, замещен на аминогруппу (-NH2), например: Следует подчеркнуть, что все аминокислоты, входящие в состав природных белков являются а-аминокислотамн, хотя аминогруппа в свободных аминикарбоновых кислотах может находиться, как увидим ниже, в β, γ, δ, ε -положениях.   2. Физико-химические св-ва белков 1 Наиболее характерными физико-химическими свойствами белков являются: высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению Уф-лучей при 280 нм (это последнее свойство, обусловленное наличием в белках ароматических аминокислот, используется для количественного определения белков). Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Белки обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан рад характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии. Этот эффект используется, кроме того, в современных методах, микроскопии биологических объектов. Молекулы белка не способны проходить через, полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей, хотя при органических поражениях, например почек, капсула почечного клубочка (Шумлянского -Боумена) становится проницаемой для альбуминов сыворотки крови, и они появляются в моче. Денатурация белка под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. Таким образом, под денатурацией следует понимать нарушение общего плана - уникальной структуры нативной молекулы белка, приводящее к потере характерных для нее свойств (рас-творимости, злектрофоретической подвижности, биологической активности и т. д.). Большинство белков денатурируют при нагревании их раствором выше 50-60о С. Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению коли­чества свободных функциональных SH-rpyпп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической антигенной или гормональной) При денатурации разрушаются в основном нековалентные (в частности, водородные) связи и дисульфидные мостики и не затрагиваются пептидные связи самого остова полипептидной цепи При этом развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры.   3. Структура белка. Последовательность расположения аминокислотных остатков в полипептидной цепи белковой молекулы получила название первичной структуры белка. Многократно повторяющаяся пептидная связь (-СО-NH) является типичной ковалентной связью, которая определяет первичную структуру белка. Первичная структура белка, помимо большого числа пептидных связей, обычно содержит также небольшое число дисульфидных (-S-S-) связей. Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка, она представлена в основном α-спиралью, которая фиксирована водородными связями. Однако оказалось, что в растворах белка спирализованная полипептидная цепочка может принимать ту или иную конфигурацию. Эта конфигурация полипептидной спирали в пространстве определяет ее третичную структуру. Другими словами, третичная структура показывает, как полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле). Известная стабильность третичной структуры белка обеспечивается за счет водородных связей, межмолекулярных ван-дер-ваальсовых сил, электростатического взаимодействия заряженных групп и т д. Молекулы некоторых белков (например, гемоглобина) состоят из нескольких симметрично построенных частиц (одинаковых полипептидных цепей), обладающих одинаковой первичной, вторичной и третичной структурой. Совокупность таких одинаковых частиц (субъединиц), представляющая единое молекулярное образование в структурном и функциональном отношении, получила название четвертичной структуры белка. Успехи в изучении вторичной и третичной структуры белковой молекулы были достигнуты в результате применения физико-химических и особенно физических методов исследования, в частности рентгеноструктурного анализа, с использованием аппаратуры с высокой разрешающей силой и электронных счетно-решающих устройств. На основании этих данных были построено пространственные модели ряда белков, например миоглобина. 4. Белки плазмы крови. Альбумины, глобулины. Белки плазмы крови. Подразделяются на: альбумины 40-50гр/л, глобулины 20-30 гр/л, Фибриноген 2-4 гр/л Всего в плазме крови присутствуют более 100 индивидуальных белков. Функции белков: 1. транспортные, поддержание рН, резерв аминокислот, защитная, поддержание уровня 2. поддержание осмотического давления (0,02 атм плазмы крови) Характеристика некоторых белков: Сывороточный альбумин состоит из 1-й полипептидной цепи содержащий около 585 аминокислот, имеет 17 дисульфидных мостиков. Выделяют 3 домена. Структуры доменов сходны. Молекула представляет собой эллипсоид размером 3 на 15 нм. Это типичный простой белок. Концентрация в плазме чуть выше 50 гр/л. Основная функция – 1) участие в осмотической регуляции. В кровяном русле находится только 40% альбуминов, остальная часть входит в состав внеклеточной тканевой жидкости. 2).Транспортная. Заключается в переносе свободных жирных кислот, перенос билирубина, перидоксаля, глютатиона, Са, Zn. Кроме того альбумины переносят часть стероидов, участвуют они в транспорте многих лекарственных веществ, (например сульфаниламидных препаратов, пинициллина, аспирина и др.) 3) Резерв белков в организме. Фракция альбуминов при электрофорезе делится на: 1). Альбумины А 2). Альбумины В α1 глобулины и α2 глобулины Ингибиторы протеиназ α1 антитрипсин, α2 макроглобулин, интер-α-трипсиновый ингибитор. Они выполняют роль ингибиторов ферментов свертывания крови, разрушают протеиназы, поступающие в кровь при повреждении клеток. Церуллоплазмин. Относится к фракции α2 глобулинов. Медьсодержащий гликопротеин плазмы, обладающий оксидазной активностью. При недостатке возникает болезнь Коновалова-Вильсона. Характеризуется накоплением меди в печени и головном мозге, в результате развивается поражение печени и достаточно выраженные неврологические симптомы. Гаптоглобины. Составляют 25% всех α2 глобулинов. Это белки связывающие гемоглобин, которые появляются в крови в результате сосудистого гемолиза. Такое связывание предотвращает потерю из организма железа с одной стороны, а с другой защищает почки от повреждения гемоглобином. Далее этот комплекс (гаптоглобин связавший гемоглобин) поглощается клетками ретикулоэндотелиальной системы. Низкий уровень этих белков наблюдается у больных с гемолитической анемией. β-глобулины. Так же состоят из различных белков. Трансферин обеспечивает связывание и перенос железа. Гемопексин  связывает свободный гем, предотвращая выделения с мочой и потеря железа. Комплекс гем-гемопексин улавливается печенью, где железо высвобождается для последующего использования. (Синтезируется в печени. Каждая молекула гемопексина связывает одну молекулу гема.) С-реактивный белок. Острофазный белок. Его определение используется в качестве показателя остроты патологических процессов наиболее часто при ревматизме.Значительная часть белков фракций α и β глобулинов являются гликопротеидами и липопротеидами. γ-глобулины. Это белки плазмы, входящие в группу иммуноглобулинов. Они относятся к белкам, выполняющим защитную функцию. Иммуноглобулины вырабатываются в ответ на попадание во внутреннюю среду организма чужеродных веществ - антигены. Антитела способны связывать антигены и тем самым устранять чужеродные вещества. Иммуноглобулины высоко специфичны. Все иммуноглобулины - белки с четвертичной структурой. Все иммуноглобулины содержат тяжелые Н-цепи и легкие L-цепи. По 2.   5. Фибриллярные белки. Характерная структурная особенность фибриллярных белков - вытянутая, нитевидная форма молекул. Эти молекулы образуют многомолекулярные нитевидные комплексы - фибриллы. Фибриллярный белок коллаген - самый распространенный белок в мире животных; в организме человека на его долю приходится примерно 1/3 от общего количества белков. Молекула коллагена (тропоколлагена) построена из трех пептидных цепей, каждая пептидная цепь содержит около 1000 аминокислотных остатков. Необычен аминокислотный состав коллагена: каждая третья аминокислота - это глицин, 20% составляют остатки пролина и гидроксипролина, 10% - аланина, остальные 40% представлены всеми другими аминокислотами. Коллаген - единственный белок, в котором содержится гидроксипролин. Эта аминокислота получается путем гидроксилирования части остатков пролина уже после образования пептидных цепей. Гидроксилируется также некоторая часть остатков лизина с превращением в гидроксилизин. Пептидные цепи коллагена представляют собой последовательность триплетов глу - Х - Y, где Х и Y может быть любой аминокислотой; часто положение X занимает пролин, а положение У — гидроксипролин. Ниже представлен фрагмент пептидной цепи коллагена (Hyp - гидроксипролин): Каждая из пептидных цепей коллагена имеет конформацию спирали, отличающейся от α-спирали, в молекуле коллагена все три спирали, в свою очередь, перевиты друг с другом, образуя плотный жгут (рис. 18). Между спиралями за счет пептидных групп образуются водородные связи (—С=О...Н— N—). Такие же водородные связи имеются и внутри каждой цепи. Все три цепи молекулы коллагена ориентированы параллельно, т. е. на одном конце коллагена имеются N-концы цепей, на другом -С-концы. Коллаген -сложный белок, гликопротеин: содержит моносахаридные (галактозильные) и дисахаридные (галактозил-глюкозильные) остатки, соединенные с гидроксильными группами некоторых остатков оксилизина. Молекулы коллагена, соединяясь «бок о бок», образуют микрофибриллы; из микрофибрилл формируются более толстые фибриллы, а из них — волокна и пучки волокон. Связи между молекулами коллагена в фибриллах ковалентные; они возникают за счет взаимо­действия оксилизиновых остатков. Коллагеновые волокна вместе с другими полимерными веществами межклеточного матрикса составляют основу соединительной ткани, обеспечивающую ее опорную функцию Фибриллярные белки нерастворимы в воде. Они не перевариваются в пищеварительном тракте большинства животных и человека, и поэтому не могут служить пищей.   6. Хромопротеиды. Гемоглобин. Хромопротеины сост из простого белка и связ с ним окраш небелкового компонента, откуда и произошло их название (от греч. chroma - краска). Среди хромопротеинов различают гемопротеины, (содержащие в качестве простетической группы железо), магний-.порфирины и флавопротеины (содержащие производные изоаллоксазина). Хромопротеины наделены рядом уникальных биологических функций они участвуют в таких фундаментальных процессах жизнедеятельности, так фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и углерода, окислительно-восстановительные реакции, свето- и цветовосприятие и др. Т. о., хромопротеины играют исключительно важную роль в процессах жизнедеятельности Достаточно, например, подавить дыхательную функцию гемоглобина путем введения оксида углерода или утилизацию (потребление) кислорода в тканях путем введения синильной кислоты или ее солей (цианидов) ингибирующих ферментные системы клеточного дыхания, как моментально наступает смерть организма. Хромопротеины являются непременными и активными участниками аккумулирования солнечной энергии в зеленых Гемопротеины. К ним относятся гемоглобин и его производные, миоглобин, хлорофиллсодержащие белки и ферменты (вся цитохромная система, каталаза и пероксидаза) Все они содерж в качестве небелкового компонента структурно сходные железо (или магний)-порфирины, но различные по составу и структуре белки обеспечивая тем самым разнообразие их биологических функций. Рассмотрим более подробно химическое строение гемоглобина, наиболее важного для жизнедеятельности человека и животных соединения. Гемоглобин это гемопротеид. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептид. цепи. Есть несколько видов гемоглобина: гемоглобин А, есть и фетальный гемоглобин, в состав которого входят несколько иные цепи. Миоглобин похожий по структуре белок - мышечный белок, который в отличие от гемоглобина состоит из 1 полипептид. цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий. Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро, состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые краски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород. Восстановление гемоглобина происходит за счет фермента -метгебоглобинредуктазы. У детей этот фермент крайне неактивен. В боковой цепи содержится 4 метильные группы , 2 винильных и 2 остатка пропионовой кислоты.Болезни гемоглобинов (их насчитывают более 200) называют гемоглобинозами. Принято делить их на гемоглобинопатии, в основе развития которых лежит наследственное изменение структуры какой-либо цепи нормального гемоглобина (часто их относят также к «молекулярным болезням»), и талассемии, обусловленные нарушением синтеза какой-либо нормальной цепи гемоглобина. Различают, также железодефицитные анемии. Классическим примером наследственной гемоглобинопатии является ссрповидно-клеточная анемия. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Гемоглобин S. Отличается по ряду свойств от нормального гемоглобина, в частности, после отдачи кислорода в тканях он превращается в плохо растворимую форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Последние деформируют клетку и приводят к массивному гемолиз Химический дефект сводится к замене единственной аминокислоты, а именно глутаминовой, в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК, кодирующей синтез β-цепи гемоглобина Талассемии, строго говоря, не являются гемоглобинопатиями. Это генетически обусловленное нарушение синтеза одной из нормальных цепей гемоглобина. Если угнетается синтез β-цепей, то развивается β-талассемия, при генетическом дефекте синтеза α-цепей развивается α-талассемия.   7. Фосфопротеиды, гликопротеиды. К белкам этого класса относятся казеиноген молока, в котором содержание фосфорной кислоты достигает 1%, втеллин, виеллинин и фосвитин, выделенные го желтка куриного яйца, овальбумин, открытый в белке куриного яйца, ихтулин, содержащийся в икре рыб, и др. Большое количество фосфопротеииов содержится в ЦНС. Фосфопротеины занимают особое положение в биохимии фосфорсодержащих соединений не только в результате своеобразия структурной организации, но и вследствие широкого диапазона функций в метаболизме. Характерной особенностью структуры фосфопротеинов является то, что фосфорная кислота оказывается связанной сложноэфирной связью с белковой молекулой через гидроксильные группы β-оксиаминокислот, главным образом серина и в меньшей мере треонина. Фосфопротеины в клетках синтезируются в результате посттрансляционной модификации, подвергаясь фосфорилированию при участии протеинкиназ. Фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. С другой стороны, они являются ценными источниками энергетического и пластического материала в процессе эмбриогенеза и дальнейшего постнатального роста и развития организма. Простетические группы гликопротеинов представлены углеводами и их производными, весьма прочно связанными с белковой частью молекулы Для определения химической природы углеводного компонента нативные гликопротеины го межклеточного вещества, сыворотки крови и других биологических жидкостей подвергают гидролизу. После этого в гидролизате обнаруживают наряду со свободными аминокислотами гексозамины (глюкозамин, галактозамин), глюкозу, маннозу, галактозу, ксилозу, арабинозу, глюкуроновую, уксусную и серную кислоты, нейраминовую и сиаловые кислоты и др. В состав простетических групп некоторых гликопротеинов входят гликозаминогликаны (прежнее название комплекса - мукополисахариды; синонимы: гликозаминопротеогликаны, протеогликаны), иногда встречающиеся в тканях и в свободном состоянии. К гликозаминогликанам относятся гиалуроновая и хондроитинсерная кислоты. Гиалуроновая кислота входит в состав внеклеточного основного вещества соединительной ткани, содержится в клеточных оболочках, а также в значительных количествах в синовиальной жидкости и стекловидном теле. Полимерная линейная структура гиалуроновой кислоты обеспечивается регулярным чередованием дисахаридных единиц, состоящих из D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединенных β (1-3)-гликозидной связью. Между собой эти структурные единицы дисахаридов соединены обычными в (1-4)-связями; последние разрываются при действии фермента гиалуронидазы. Хондроитинсерная кислота также является полимерной молекулой внеклеточного основного вещества и имеет аналогичную с гиалуроновой кислотой структуру, с тем единственным отличием, что вместо N-ацетил-D-глюкозамина в ее состав входит N-ацетил-D-галактозамин, к гидроксильной группе 4-го углеродного атома которого присоединена сульфатная группа.


Дата добавления: 2019-02-12; просмотров: 241; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!