Глава 10. Медицинская генетика



 

Между человеком и животным нет разницы более глубокой, нежели какая существует и между различными животными.

В. Вундт (1832–1920), немецкий психолог

 

Медицинская генетика изучает генетические основы патологии человека. В задачи медицинской генетики входят изучение характера наследования и проявления патологических признаков, распространения генов, детерминирующих эти признаки в популяциях, разработка принципов классификации, диагностики и профилактики наследственных болезней (Бочков Н. П. [и др.], 1984; Бочков Н. П., 2004).

 

Человек как объект генетики

 

Человек представляет собой довольно трудный объект для генетических исследований. Как высокоорганизованный вид, он имеет сложную генетическую организацию. Однако объем и структура генетического материала человека не имеет принципиальных отличий от других млекопитающих. Главную трудность представляет недопустимость экспериментирования (в том числе направленного скрещивания) над человеком.

В генетике человека разработаны собственные методы.

Генеалогический метод. Анализ родословных для определения типа наследования. Недостатком этого метода обычно является нехватка данных. При составлении родословных используются стандартные обозначения:

 

 

Близнецовый метод. Применяется для выяснения степени наследственной обусловленности исследуемых признаков. Метод основан на сравнении по ряду признаков однояйцевых и разнояйцевых близнецов. Полученные данные анализируются по показателям конкордантности (сходства) и дискордантности (различия) признака, выражаемым в процентах. На основании этих данных вычисляется коэффициент наследуемости по формуле немецкого генетика К. Хольцингера:

 

 

где K 1 – конкордантность признака для монозиготных близнецов; K 2 – конкордантность признака для дизиготных близнецов.

Популяционный метод. Выявляет различие частот аллелей между разными популяциями. Часто распространение определенных аллелей в истории человека было связано с устойчивостью разных генотипов к инфекционным заболеваниям. Поэтому популяционный метод позволяет определить адаптивность конкретных генотипов.

Классическим примером может служить распространение рецессивного аллеля, кодирующего β‑цепь гемоглобина. В гомозиготном состоянии этот аллель обусловливает заболевание – серповидно‑клеточную анемию с летальным исходом. Однако в гетерозиготном состоянии он способствует большей устойчивости к малярии (по сравнению с гомозиготой по нормальному аллелю). Поэтому в местах распространения малярии отбор шел в пользу гетерозигот.

В популяциях человека (в большей степени, чем в популяциях других организмов) имеются рецессивные аллели, обусловливающие различные заболевания. Они представляют собой генетический груз человека. Ранее уже говорилось об условности понятия «генетический груз» в природе с точки зрения балансовой теории. Пожалуй, только у человека это понятие приобретает реальный смысл.

Цитогенетический метод. Является основным методом медицинской генетики. Все разновидности цитогенетического метода можно разделить на прямые и непрямые. При прямом методе используют активно делящиеся клетки (обычно это костный мозг), из которых получают препараты хромосом, зафиксировав их на стадии метафазы. Этот метод имеет весьма узкое применение, преимущественно в онкологии.

При непрямом методе необходимо предварительное культивирование клеток (обычно это лимфоциты крови) в особой среде in vitro. Среда для культивирования включает стандартную питательную среду, эмбриональную сыворотку, содержащую необходимые факторы роста, и добавку – фитогемагглютинин (ФГА). ФГА стимулирует явление бласттрансформации, в результате которого начинается активное митотическое деление лимфоцитов. Через определенный промежуток времени (обычно через 72 ч) культура клеток подвергается воздействию колхицина, который останавливает процесс деления на стадии метафазы, когда хромосомы максимально спирализованы. Клетки фиксируют смесью спирта и уксусной кислоты, окрашивают и анализируют хромосомы под микроскопом. Используются различные виды дифференциальной окраски хромосом, рассмотренные ранее (рис. 10.1).

 

Рис. 10.1. Хромосомы человека, окрашенные методом G‑окраски

 

Другими клетками, используемыми в цитогенетическом анализе, являются клетки кожи, клетки эмбриональных тканей, половых желез.

В зависимости от цели исследования выбирается способ окраски и вариант предварительной обработки препаратов. В медицинской цитогенетике обычно выясняют нормальность или аномальность кариотипа. В случае отклонения необходимо идентифицировать патологию.

 

Кариотип человека

 

Диплоидное число хромосом человека, равное 46, было определено только в 1956 г. в работе И. Тио и А. Левана (Tjio J., Levan А., 1956). До этого считалось, что хромосом у человека 48. Впервые хромосомы человека были классифицированы еще до открытия дифференциальной окраски на основании двух критериев – длины хромосомы и центромерного индекса (отношение длины короткого плеча к общей длине хромосомы

.

На конференциях в Денвере (США) в 1960 г. и в Лондоне в 1963 г. в кариотипе человека были выделены 7 групп аутосом и половые хромосомы X и Y. Среди аутосом человека имеются метацентрические, субметацентрические и акроцентрические хромосомы. На основании размеров и формы у человека можно идентифицировать только 4 аутосомы(1–3, 16) и Y‑хромосому (Захаров А. Ф. [и др.], 1982).

Все хромосомы были идентифицированы после применения методов дифференциальной окраски. На Парижской конференции по стандартизации и номенклатуре хромосом человека в 1971 г. были приняты правила описания и обозначения хромосом человека, действующие и ныне (рис. 10.2). Эти правила были закреплены в стандарте International systems for human cytogenetics nomenclature (ISCN‑1978).

 

Рис. 10.2. Идиограмма человека согласно ISCN‑1978

 

Группам аутосом были присвоены буквенные обозначения: А (1–3), B (4–5), C (6–12), D (13–15), E (16–18), F (19–20), G (21–22). В скобках указаны номера хромосом каждой группы.

В характеристике кариотипа вначале указывается общее число хромосом и набор половых хромосом. Затем (при наличии мутаций) указываются геномные, а после – хромосомные мутации. Большое диагностическое значение для идентификации хромосом имеют хромосомные маркеры (chromosome landmarks ) – полосы, наиболее четко выделяющиеся при дифференциальной окраске и разделяющие хромосому на районы. Нумеруются районы, а также полосы внутри района по направлению от центромеры к теломере. На некоторых полосах удается локализовать определенные гены генетической карты хромосомы (рис. 10.3).

 

Рис. 10.3. Маркеры, обозначение полос и некоторые локусы 1‑й хромосомы человека

 

При уменьшении степени спирализации хромосом, на стадии прометафазы (между профазой и метафазой) многие полосы (блоки) распадаются на субблоки – тогда вводится 3‑й уровень нумерации (рис. 10.4).

 

Рис. 10.4. Идиограмма прометафазных хромосом человека

 

Различные виды хромосомных аберраций имеют свои символические обозначения, что очень удобно для клинической практики. Наиболее важные из них:

del – делеция;

dup – дупликация;

inv – инверсия;

t – транслокация;

rob – робертсоновская транслокация;

+ – дополнительный генетический материал;

g ( gap) – пробел.

Рассмотрим несколько примеров:

47, ХY, 21+ – мужской кариотип с дополнительной хромосомой 21 (синдром Дауна).

47, XX, 18+р+, del (1), (q1.2–2.1) – женский кариотип с дополнительной хромосомой 18, у которой удлиненное короткое плечо, имеет делецию в хромосоме 1 участка 1.2–2.1 длинного плеча.

45, ХY, rob (13, 21), g (8), q (21), inv (3), (q1.2–1.4) – мужской кариотип, 45 хромосом с робертсоновской транслокацией хромосом 13 и 21, имеет пробел на хромосоме 8 в районе 21 длинного плеча и инверсию в хромосоме 3 между участками 1.2 и 1.4 длинного плеча.

 


Дата добавления: 2019-02-12; просмотров: 309; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!