ВОСПОМИНАНИЕ № 10. ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ И ПЕРЕМЕННЫЙ ТОК. 12 страница



Не думайте, что, изготовив выпрямитель, вы уже сделали все необходимое для того, чтобы самостоятельно заряжать аккумуляторы. Нужно еще иметь представление, как именно, в каком режиме и в течение какого времени следует производить зарядку. Проще говоря, нужно не только иметь чем заряжать аккумулятор, но еще и уметь это делать.

Здесь, пожалуй, неуместно рассказывать о том, как это делается. Существует очень много пособий и инструкций по зарядке и эксплуатации аккумуляторов. Но одну рекомендацию мы все же дадим: будьте осторожны.

Будьте осторожны, так как в аккумуляторе имеется кислота, а она может испортить (проще говоря, сжечь) одежду, а попав на кожу, вызывает ожоги.

Будьте осторожны, так как при зарядке аккумулятора выделяется кислород и водород, а вместе они образуют гремучий газ, который, если поднести огонь, взрывается.

Будьте осторожны (трижды осторожны!), работая с выпрямителем, так как к нему подводится сетевое напряжение, попав под которое, особенно если у вас влажные руки или если вы стоите на сыром полу, можно стать участником (и жертвой!) весьма трагичных событий. Настолько трагичных, что в этих событиях лучше не участвовать. Даже если вам очень нужно зарядить аккумулятор.

Следующая практическая схема с участием полупроводникового диода – это двухдиапазонный детекторный приемник (рис. 43–1 ).

 

рис. 43 –1

 

Нужно прямо сказать, что детекторный приемник, если не считать разного рода помех, например грозовых разрядов, удовлетворительно принимает только местные мощные станции. И вполне вероятно, что на обоих диапазонах вы больше одной‑двух станций и не услышите. Разумеется, для приема двух станций можно было и не строить приемник с плавной настройкой да еще двухдиапазонный. Однако для нас постройка такого приемника имеет определенный смысл. И не только учебный. В дальнейшем к детекторному приемнику будут добавлены усилительные каскады, и постепенно, шаг за шагом, мы превратим его в более или менее чувствительный аппарат, принимающий довольно много станций.

Прежде всего несколько слов о приведенных на рис. 43 трех схемах детекторных приемников.

Первая из них (рис. 43–1 ) уже встречалась нам в общем виде (рис. 27–21 ; вместо головных телефонов в качестве нагрузки включен резистор). Колебательный контур образуется конденсатором переменной емкости С2 и одной из катушек – L1 или L2 . При приеме на длинных волнах переключатель П1 подключает к контурному конденсатору С2 катушку L1 , а при приеме на средних волнах – катушку L2 . Индуктивность L2 в несколько раз меньше, чем L1 , а значит, при включении L2 вместо L1 резонансная частота контура резко повышается, что и требуется при переходе на средние волны.

Через конденсатор С1 небольшой емкости (его называют конденсатором связи) к контуру подключена антенна. Можно было бы присоединить антенну непосредственно к контуру и без конденсатора С1 – в этом случае из антенны в контур попадало бы несколько больше энергии и прием был бы громче. Однако при непосредственном подключении антенны вся ее собственная емкость (антенна и Земля образуют своего рода конденсатор, емкость которого СА обычно составляет 100–500 пф и называется собственной емкостью антенны) вошла бы в контур, суммируясь с С2 . При этом на настройке контура в меньшей степени сказывалось бы изменение емкости конденсатора С2 и с его помощью удалось бы перекрыть лишь небольшую часть диапазона. Кроме того, при смене антенны менялась бы настройка контура – ведь у разных антенн разная собственная емкость.

Благодаря введению в схему конденсатора связи собственная емкость антенны уже входит в контур не сама, а соединенная последовательно с этим конденсатором. А поскольку при последовательном соединении конденсаторов их общая емкость меньше наименьшей (см. стр. 150, Воспоминание № 14), то и емкость, вносимая антенной в контур, всегда меньше чем 30 пф. После того как вы поймаете какую‑нибудь станцию, попробуйте соединить антенну непосредственно с контуром и еще раз подстроиться конденсатором С2 . Может быть, при этом станция будет слышна немного громче.

В нашей схеме выбран наиболее простой способ переключения (коммутации) катушек – на каждом диапазоне используется отдельная катушка, которая либо включается в контур переключателем П1 , либо «висит в воздухе» (рис. 46–А' ). Иногда применяются и другие схемы коммутации. Вместо длинноволновой катушки, например, используется лишь своего рода «добавка» (рис. 46–А" ), катушка L1 , которая на длинных волнах соединяется последовательно с нормальной средневолновой катушкой L2 , и общая индуктивность оказывается больше суммы L1 + L2 (за счет взаимоиндукции). Подобная схема, в частности, применяется в приемнике «Селга».

 

 

Рис. 46. Существуют различные схемы переключения (коммутации) контурных катушек.

(Рис. 42–45 см. на цветной вклейке между стр. 128–129.)

 

В принципе возможна еще и такая схема коммутации: на средних волнах параллельно длинноволновой катушке подключается «добавка» L2 (рис. 46–А" ), и общая индуктивность уменьшается до нужной на СВ диапазоне величины.

Много остроумных схем коммутации можно встретить в супергетеродинных приемниках с большим числом растянутых коротковолновых диапазонов. Интересные схемы коммутации применяются в универсальных измерительных приборах для переключения предела измерений или рода работы. Нужно сказать, что составление экономных, разумных схем коммутации – занятие хотя и не простое, но довольно интересное.

Теперь о деталях детекторного приемника. В качестве самого детектора Д1 можно применить любой точечный диод. Выключатель Вк1 также может быть любого типа, лишь бы он осуществлял нужное переключение.

В нашем первом детекторном приемнике используется перекидной выключатель ТП‑1 (рис. 43–4 ; переключатели такой конструкции обычно называют тумблерами). Этот выключатель поочередно замыкает две пары неподвижных контактов (1 с 2 или 3 с 4 ), а сам подвижной контакт вывода не имеет.

 

 

рис. 43 –4

 

Соединив два неподвижных контакта, например, 2 и 4 , можно превратить ТП‑1 в однополюсный переключатель. Роль подвижного контакта в нем будут играть соединенные вместе контакты 2 и 4 , которые могут подключаться либо к контакту 1 , либо к контакту 3.

В расчете на будущие более сложные схемы удобней было бы применить двухполюсный перекидной переключатель ТВГ, в котором есть два подвижных контакта (поэтому‑то он и называется двухполюсным) с самостоятельными выводами и четыре неподвижных контакта. Каждый подвижной контакт «обслуживает» свою пару неподвижных контактов (рис. 43–5 ). Для того чтобы заменить ТВГ, нужно иметь два выключателя ТП‑1.

 

 

рис. 43 –5

 

Для плавной настройки контура используется малогабаритный конденсатор переменной емкости, специально выпускаемый для радиолюбителей. Можно применить и керамический подстроечный конденсатор типа КПК, например КПК‑5 25–175. Последние две цифры указывают соответственно минимальную и максимальную емкость конденсатора. Из‑за сравнительно небольшого изменения емкости в таком керамическом конденсаторе перекрываемый диапазон несколько уменьшится. Если вы не стеснили себя габаритами приемника (а на первых порах совсем не стоит гоняться за тем, чтобы подковать блоху), то лучше всего осуществить настройку одной секцией стандартного блока воздушных конденсаторов переменной емкости от любого старого лампового приемника.

Головные телефоны должны быть высокоомные, например ТОН‑2, сопротивление каждого наушника которых 1600 ом. Сам приемник монтируется на небольшой фанерной панельке, в которую вставлены жестяные лепестки и такие же жестяные гнезда (рис. 47).

 

 

 

Рис. 47. Монтаж транзисторных схем можно производить на фанерных панелях, в которые вставлены монтажные лепестки из жести.

 

Более подробно нужно остановиться на изготовлении контурных катушек (рис. 48).

 

 

Рис. 48. Контурные катушки могут быть намотаны на ферритовых стержнях (магнитные антенны), в горшкообразных сердечниках, на ферритовых кольцах и на пластмассовых каркасах с подстроенными сердечниками.

 

Прежде всего одно важное общее замечание. Радиолюбители обычно очень старательно выполняют все указания по изготовлению контурных катушек. И это неплохо: катушка, изготовленная точно по описанию, как правило, получается именно такой, какой она и должна быть. А это упрощает налаживание приемника.

Но обратите внимание, что точное копирование катушки только облегчает налаживание, а не избавляет от него. Много разных, казалось бы, второстепенных факторов, таких, например, как емкость монтажа, собственная индуктивность соединительных проводов или, наконец, емкость полупроводниковых приборов, могут свести на нет все труды по точному копированию катушки.

Даже в заводских условиях, когда технология массового производства позволяет делать все приемники абсолютно одинаковыми, эти приемники одинаковыми все же не получаются. Именно поэтому в контурные катушки почти всегда вводят элементы подстройки, чаще всего подстроечные сердечники из магнитного материала. По той же причине при самостоятельном изготовлении катушек нужно спокойней относиться к некоторым небольшим отклонениям от описания и помнить, что индуктивность катушки можно тем или иным способом подогнать при налаживании приемника.

Главное, что характеризует катушку индуктивности, – это ее индуктивность L . А она, в свою очередь, зависит от числа витков, диаметра и длины намотки, размеров, конфигурации и материала сердечника. Очень часто, сохраняя заданную индуктивность L , можно заменять один тип катушек другим.

Например, вместо катушек в горшкообразном сердечнике (рис. 48–В ) применять катушки, намотанные на ферритовых кольцах (рис. 48–Д ). Если нет возможности точно воспроизвести какую‑либо контурную катушку – нет нужного провода, нужного каркаса или нужного сердечника, – то вовсе не следует отчаиваться. Всегда можно сделать несколько иную катушку, на ином каркасе, намотанную иным проводом, и, подобрав число витков катушки (для этого, конечно, придется повозиться), получить нужную индуктивность.

Никто не говорит о том, что к контурной катушке можно относиться неуважительно. За небрежность и ошибки при изготовлении катушек приходится дорого платить, и прежде всего временем. Но не кидайтесь и в другую крайность: не бойтесь катушки. Помните, что главная характеристика контурной катушки – ее индуктивность L – всегда в ваших руках.

После этого общего замечания – несколько конкретных. Основные типы катушек, применяемых в любительских и промышленных приемниках, показаны на рис. 48. Контурные катушки, намотанные на длинном круглом (рис. 48, листок А ) или прямоугольном (листок Б ) ферритовом стержне, называются магнитной антенной. Это название связано с тем, что такая катушка хорошо отбирает энергию у приходящих к ней радиоволн, используя эту энергию на создание переменного тока в своей цепи. В этом отношении магнитная антенна делает, по сути дела, то же самое, что и обычная антенна. Только обычная антенна для создания электрического сигнала вылавливает (см. примечание на стр. 26) электрическую составляющую электромагнитных волн (радиоволн), а магнитная антенна вылавливает их магнитную составляющую.

По своей эффективности магнитная антенна эквивалентна обычной проволочной антенне высотой 2–3 метра. Отличительная особенность магнитной антенны – направленный прием. Она лучше всего ловит энергию радиоволн, которые приходят с направлений, перпендикулярных стержню. Именно поэтому приемник, снабженный магнитной антенной, вращают, направляя эту антенну на принимаемую станцию (рис. 48).

Очень часто применяются катушки, намотанные на так называемых броневых (горшкообразных) сердечниках. Такой сердечник представляет собой собранную из двух половинок закрытую чашу, внутрь которой вставлен небольшой пластмассовый каркасик с самой катушкой. Броневые сердечники делают из прессованных магнитных порошков, чаще всего карбонильного железа или феррита. Карбонильный сердечник обозначается буквами СБ, ферритовый – Б. Цифра в названии сердечника указывает его внешний диаметр. Так, например, СБ‑12 означает: «сердечник броневой, карбонильный диаметром 12 мм»; название «Б6» означает: «сердечник броневой ферритовый диаметром 6 мм».

В конце названия любого сердечника, в том числе и броневого, может стоять еще одна цифра. Она характеризует свойство магнитного материала, из которого сделан сердечник. Чем больше эта цифра, тем выше магнитная проницаемость сердечника, тем больше будет индуктивность намотанной на нем катушки. Однако, как правило, с повышением магнитной проницаемости сердечника уменьшается предельная частота, на которой его можно применять.

Так, например, из таблицы 6 видно, что сердечники с проницаемостью 4000 пригодны для частот не более 150 кгц, а сердечники с проницаемостью 1000 – до 750 кгц. В длинноволновых катушках обычно используют ферритовые сердечники с проницаемостью не более 1000, а в средневолновых катушках– сердечники с проницаемостью не более 600. Для коротковолновых катушек пригодны сердечники, проницаемость которых обычно не превышает нескольких десятков. Эти ограничения относятся к стержням магнитной антенны, к броневым сердечникам и к любым другим.

 

 

Радиолюбители для намотки катушек используют ферритовые кольца (рис. 48–Г ) разных размеров. Размеры кольца отражены в самом его названии: первая цифра названия указывает внешний диаметр кольца D , вторая – его внутренний диаметр d , третья цифра – высоту кольца h . В название кольца входит также и марка феррита. Так, например, название кольца К6 х 2,5 х 2,8 – 600НН означает: «кольцо с внешним диаметром D = 6 мм, внутренним диаметром d = 2,5 мм, высотой h = 2,8 мм; сделано из феррита с проницаемостью 600».

Существует два основных способа изготовления сердечников на ферритовых кольцах: можно использовать своего рода челнок, на который предварительно наматывают небольшой кусок провода (рис. 48–Д ), а можно намотать провод, предварительно расколов кольцо, а затем склеив его, например, клеем БФ‑2 (рис. 48–Е ). При склейке нужно хорошо совместить и крепко сжать половинки кольца, так как зазор между ними резко уменьшает индуктивность катушки.

Для намотки катушек часто используют также стандартные каркасы из различных видов пластмассы с небольшими стержневыми ферритовыми сердечниками (рис. 48–Ж ).

Примерные данные контурных катушек L 1 и L2 при использовании разных типов сердечников приведены в таблице 7.

 

 

1. Магнитная антенна на круглом стержне из феррита 600 НН (Ф–600); диаметр – 8 мм, длина 140 мм.

2. То же, длина стержня 160 мм.

3. Магнитная антенна на плоском стержне из феррита 600 НН (Ф–6 °C) размеры стержня 2,8 х 11 x 85 мм.

4. То же, размеры стержня З х 20 х 100 мм.

5. То же, размеры стержня 4 х 16 х 125 мм.

6. Горшкообразный сердечник СБ–12а (см. рис. 48 – В ). Размеры D = 12,3 мм, d = 9 мм и l = 8 мм.

7. Катушка на ферритовом кольце (см. рис. 48 – Г ). Размеры кольца D = 10 мм, d = 6 мм, h = 2 мм. Феррит 600 НН (Ф–600).

8. То же, феррит 2000НМ (Ф–2000).

9. Катушка на секционированном пластмассовом каркасе с ферритовым сердечником. Размеры каркаса D = 6 мм, l = 4 x 3 мм.

 

В нашем приемнике можно применить любой тип катушек, указанный в таблице (так же, впрочем, как и другие типы катушек, не попавшие в нее), но лучше всего, пожалуй, сделать магнитную антенну. И лишь только потому, что она в дальнейшем будет использована в других приемниках.

Для детекторного приемника магнитная антенна не имеет никакого смысла – она не в состоянии отнять у радиоволн энергию, достаточную для того, чтобы прокормить (см. примечание на стр. 26) головные телефоны. Для детекторного приемника нужна очень хорошая, очень большая антенна из медной проволоки и обязательно нужно заземление. Комнатная антенна длиной в 5–10 м годится лишь при приеме мощных местных станций.

Данные катушек можно взять из таблицы 7, а также из описаний любительских или заводских приемников. Провод ПЭ – это обычный провод в эмалевой изоляции, провод ПЭЛШО – такой же провод, как и ПЭ, но покрытый снаружи еще и шелковой изоляцией, а провод марки ЛЭШО – это так называемый литцендрат. Он состоит из большого числа очень тоненьких жилок – в название литцендрата входит число жилок и диаметр каждой из них. Так, например, провод ЛЭШО 21х0,07 содержит 21 жилку, диаметром 0,07 мм каждая. Применение литцендрата всегда желательно, так как он обладает очень малыми потерями на высоких частотах, и катушки, намотанные таким проводом, отличаются высокой добротностью (Воспоминание № 20).

При изготовлении катушек из литцендрата нужно проявлять сверхаккуратность: если хотя бы одна из жилок окажется обломанной или непропаянной, то контур, по сути дела, будет погублен. Вот почему у литцендрата очень важно аккуратно зачистить тончайшей шкуркой и залудить все жилки, убедиться в том, что ни одна жилка не обломалась, и уже после этого, объединив все эти жилки, подпаять их к нужному монтажному лепестку.

Таблица 7 требует некоторых пояснений.

В средней колонке этой таблицы число витков указано в расчете на применение конденсатора с минимальной емкостью Смин = 10 пф и максимальной около Смакс = 250 пф. Минимальная емкость контура Ск‑мин всегда больше, чем Смин конденсатора, за счет емкости монтажа, собственной емкости катушки и других «паразитных» емкостей. Все эти емкости как бы подключаются параллельно конденсатору настройки, суммируясь с его емкостью. Предполагается, что паразитная емкость равна 20 пф, и поэтому общая минимальная емкость контура Ск‑мин составит 30 пф, а максимальная Ск‑макс – 270 пф. Иными словами, при полном повороте ротора конденсатора настройки емкость контура изменяется примерно в девять раз (270:30 = 9). Запомните эту цифру, пожалуйста: девять раз.


Дата добавления: 2019-02-12; просмотров: 137; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!