ВОСПОМИНАНИЕ № 10. ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ И ПЕРЕМЕННЫЙ ТОК. 9 страница



 

Рис. 33. В результате диффузии дырки проходят через базу в область коллекторного рn ‑перехода.

 

В самом упрощенном виде вся эта сцена могла бы выглядеть так: к базе в огромных количествах подходят свободные электроны с «минуса» батареи Бэ (на то он и «минус»!), а с другой стороны – от эмиттера (на то он и зона р !) к базе подходят дырки. Дырки движутся сквозь базу, устремляются к ее выводу, который соединен с «минусом» батареи – поставщиком свободных электронов.

Здесь, в районе металлического вывода, и происходит нейтрализация дырок, превращение их в нейтральные атомы. При этом освобождается место и для новых, идущих со стороны эмиттера дырок, и для новых, идущих со стороны «минуса» батареи свободных электронов. Движение дырок, то есть прямой ток через эмиттерный рn ‑переход, идет непрерывно.

У нас получилась хотя и очень упрощенная, но весьма правдоподобная картина. И именно так все происходило бы, если бы не диффузия дырок в базе.

Дырки движутся по базе не только под действием электрических сил, не только под действием «минуса», зовущего их в цепь эмиттерной батареи Бэ . Наряду с таким упорядоченным движением дырки еще и расталкивают друг друга (напоминаем о примечании на стр. 26). Дырки стремятся разойтись из районов своего наибольшего скопления в те районы базы, где этих дырок сравнительно мало. В этом и состоит диффузия (стр. 56). Именно она приводит к тому, что некоторая часть дырок, пропутешествовав через всю базу, подходит к пограничным районам коллекторного pn ‑перехода (рис. 33, листок Б ). И вот здесь‑то все и начинается…

Коллекторный переход включен в цепь своей коллекторной батареи Б к в обратном направлении и поэтому ведет себя как большое сопротивление. Но что значит «большое сопротивление»? Это ведь совсем не означает, что между базой и коллектором стоят какие‑то невидимые заборы, препятствующие движению зарядов. «Большое сопротивление» просто означает, что нет самих свободных зарядов, которые могли бы двигаться и создавать ток. В области коллекторного pn ‑перехода зарядов нет, потому что они ушли оттуда. Этот переход включен именно так, что напряжение Ек оттягивает основные заряды от пограничной полосы, – дырки уходят из прилегающих к границе районов базы (рис. 17).

И вот теперь представьте себе, что в этот самый пограничный район базы диффузия загоняет пришедшую из эмиттера дырку. Разумеется, «минус» коллекторной батареи сейчас же потянет эту дырку к себе, и она немедленно перескочит в коллектор. Мы не будем пока говорить обо всех последствиях этого «прыжка», скажем лишь об одном. Появившись в пустом коллекторном переходе, дырка уменьшит его сопротивление. И чем больше дырок проникнет в коллекторный переход, тем меньше будет его сопротивление.

Давайте еще раз проследим всю цепочку событий.

Первое: прямой ток через эмиттерный переход поставляет в базу дырки (рис. 32). Второе: в результате диффузии дырки проходят через всю базу и попадают в район коллекторного перехода (рис. 33). Третье: попавшие в коллекторный переход дырки уменьшают его сопротивление, создают коллекторный ток (рис. 34). И отсюда делаем самый главный вывод: изменяя ток в цепи эмиттер – база, мы изменяем сопротивление цепи коллектор – база, изменяем коллекторный ток.

 

 

Рис. 34. Для коллекторного рn ‑перехода, включенного в обратном направлении, пришедшие из базы дырки – это, по сути дела, неосновные заряды, и поэтому они ускоряются коллекторным напряжением, создают коллекторный ток.

 

Не об этом ли мы мечтали? Не к этому ли стремились все время? Наконец‑то мы нашли нужного нам скульптора. Действительно, если в эмиттерную цепь включить источник слабого сигнала, то он заставит изменяться ток в этой цепи. И, значит, вслед за слабым сигналом, повторяя все его «взлеты» и «падения», будет меняться сопротивление коллекторного pn ‑перехода. А поскольку коллекторный переход включен в цепь мощного источника постоянного тока – батареи Бк , то в итоге под действием входного сигнала будет изменяться выходной ток, произойдет усиление сигнала.

В этом описании, правда, остается еще одна маленькая неясность. Еще нужно доказать, что сигнал на выходе транзистора будет не просто копией входного сигнала, а его мощной копией. Нужно доказать, что произойдет не простое копирование сигнала, а именно его усиление.

Нас, конечно, не устроит доказательство от противного: если бы транзисторы не усиливали, то кто бы стал их делать! Мы попробуем проверить усилительные способности транзистора путем рассуждений и расчетов, а также с помощью простейших экспериментов.

Прежде всего внесем поправку в простейшую модель транзистора, где три зоны полупроводникового триода отображались тремя сложенными вместе спичечными коробками (рис. 30). Выбросим среднюю коробку и вместо нее вставим пластинку тонкого картона. Теперь наша модель больше похожа на настоящий транзистор, так как базу действительно делают очень тонкой – ее толщина составляет несколько микрон или в крайнем случае несколько десятков микрон. База должна быть тонкой для того, чтобы попавшие в нее из эмиттера заряды (в нашем примере дырки), не обращая внимания на призвавший их сюда «минус» батареи Бэ , могли легко добраться к коллекторному переходу под действием сил диффузии.

И действительно, если база будет тонкой, то силам диффузии не составит никакого труда протолкнуть заряды сквозь нее в область коллекторного pn ‑перехода. А это, собственно говоря, нам только и нужно, потому что всякий заряд, достигший коллекторного перехода, в итоге будет участвовать в создании мощной копии сигнала, а заряды, которые пойдут по своему законному пути, из базы уйдут на «минус» эмиттерной батареи. Эти заряды, по сути дела, для нас потеряны.

Если вести строгий учет всем зарядам, то эмиттерный ток Iэ , после того как он войдет в базу, нужно будет разделить на две слагающие. Одну из них назовем коллекторным током Iк – его образуют заряды, которые за счет диффузии доберутся до коллекторного перехода и в дальнейшем пойдут по коллекторной цепи. Другую составляющую – базовый ток Iб – создают заряды, сумевшие протиснуться по тонкой базе и пойти своим законным путем к «минусу» батареи. Теперь события, происходящие в нашем транзисторе, можно описать так:

Iэ = Iк + Iб

Точно так же связаны между собой и изменения всех трех токов. Если, например, подняв напряжение Eэб , увеличить в два раза эмиттерный ток Iэ , то одновременно в два раза возрастут и оба порождаемые им тока Iк и Iб . При этом сумма Iк + Iб опять‑таки останется равной Iэ . Да иначе и быть не может: ведь эмиттерный ток распределяется только между этими двумя слагающими.

В дальнейшем нас будут интересовать не только токи, напряжения и сопротивления, но и изменения этих величин. Поэтому давайте сразу же договоримся о том, как сокращенно записывать само слово «изменение». Очень малые изменения той или иной величины принято обозначать греческой буквой Δ («дельта»), и, пользуясь этим, все, что мы только что сказали о взаимной связи между изменениями токов в транзисторе, можно записать так:

Δ Iэ = ΔIк + ΔIб

В переводе на русский наша запись может звучать так: «Изменение эмиттерного тока равно сумме соответствующих изменений коллекторного тока и тока базы».

Для подопытной схемы, которую мы сейчас разбираем (рис. 35), введен особый показатель использования поступивших из эмиттера зарядов. Он называется коэффициентом усиления по току, обозначается греческой буквой α и численно равен:

α   = ΔIк :ΔIэ

Коэффициент α показывает, какая часть эмиттерного тока достается коллекторному току. Смысл этого коэффициента проще всего уяснить на числовом примере: если при изменении тока эмиттера на 10 миллиампер, ток коллектора увеличится на 8 миллиампер, то α = 8:10 = 0,8. А это значит, что заряды, поставляемые эмиттером в базу, на 80 % используются для создания нужного нам коллекторного тока. Насколько же реальна такая цифра?

 

 

Рис. 35. Коэффициент усиления по току α показывает, какая часть вышедших из эмиттера зарядов участвует в создании коллекторного тока.

 

Уменьшая толщину базы и принимая ряд других мер в современных транзисторах, удается довести коэффициент α в среднем до 0,95–0,99. Это значит, что коллекторный ток (строго говоря, речь идет об изменениях тока, то есть ΔIэ, ΔIк, ΔIб ) составляет 95–99 % эмиттерного тока Iэ и лишь 1–5 % приходится на базовый ток. Иными словами, из каждой сотни зарядов, попавших в базу из эмиттера, лишь 1–5 уходят на «минус» батареи Бэ и через нее возвращаются в эмиттер, так ничего полезного и не сделав. Зато остальные 95–99 зарядов из ста добираются до коллекторного перехода, меняют его сопротивление, создают в коллекторной цепи постоянный ток, из которого в итоге и образуется мощная копия усиленного сигнала.

Выяснив все это, подключим к нашему транзистору, кроме источников питания, еще два элемента: источник усиливаемого сигнала и резистор Rн – нагрузку, на которой должен выделяться усиленный сигнал. Естественно, что усиливаемый сигнал вводится в эмиттерную цепь, а усиленный извлекается из коллекторной (рис. 36).

 

 

Рис. 36. Вместе с усиливаемым сигналом к транзистору подводится постоянное напряжение (смещение), и благодаря этому эмиттерный рn ‑переход всегда включен в прямом направлении.

 

После того как в цепи эмиттер – база появился входной сигнал Uсиг , так и хочется задать вопрос: а для чего же здесь теперь нужна батарея Бсм (она заменила батарею Бэ )? И чем постоянное напряжение Uсм (оно действует так же, как и Eэб ) может помочь напряжению сигнала Uсиг ?

Когда мы мысленно экспериментировали с транзистором, смотрели, куда в нем движутся заряды, то постоянное напряжение выполняло, если можно так сказать, учебные функции. Теперь же во входной цепи транзистора появился ее настоящий хозяин – усиливаемый сигнал. Нужно ли и после этого сохранять батарею Бэ (Бсм )? Оказывается, нужно.

Постоянное напряжение Uсм называется напряжением смещения, а созданный этим напряжением постоянный ток Iсм – током смещения. Мы договорились, что эмиттерный переход обязательно должен быть включен в прямом направлении (на этом, собственно говоря, и основан сам принцип работы транзистора), а значит, на базе всегда должен быть «минус» относительно эмиттера. (Не забудьте: «минус» на базе должен быть только в транзисторах р‑n‑р , где от эмиттера к базе движутся положительные заряды – дырки. В транзисторах n‑р‑n , где основные носители заряда в эмиттере – электроны, на базе всегда должен быть «плюс» относительно эмиттера.) Если бы во входную цепь транзистора мы ввели усиливаемый сигнал без смещения, то на базе появлялся бы то «плюс», то «минус»: ведь Uсиг – это как‑никак переменное напряжение.

То, что напряжение на базе меняется, – это хорошо. В этих изменениях как раз и записано все, что принес сигнал. Плохо лишь то, что, изменяясь, напряжение на базе временами залезает в запретную зону. Плохо и то, что моментами на базе появляется «плюс» и эмиттерный рn ‑переход запирается. Переход в этом случае просто работает как диод в выпрямителе, в его цепи появляется импульсный ток, и спектр этого тока, форма его графика (а значит, спектр и форма графика коллекторного тока, который является копией эмиттерного) уже не похожи на усиливаемый сигнал Uсиг . Проще говоря, если входное напряжение принесло с собой приятный голос диктора, то входной, а вместе с ним и выходной ток могут превратиться в рычание тигра.

Можно ли избежать этого? Можно ли, не трогая самого входного напряжения, сделать так, чтобы на базе никогда не появлялся «плюс» и чтобы график входного тока был таким же, как и график входного напряжения? Можно. И очень просто. Нужно вместе с переменным напряжением подать на базу еще и постоянный «минус». Постоянное напряжение не изменит самой формы сигнала, а лишь сместит его; отсюда и само слово «смещение» – в сторону «минуса» (рис. 36).

Все это можно проиллюстрировать простой аналогией. Во время вечера аттракционов в школе вам предложили с завязанными глазами нарисовать на листе бумаги простенькую фигуру. Вы сразу же начали рисовать неправильно – неточно нашли середину листа бумаги, съехали в сторону. Рисунок получается хороший, но только половина его попадает не на бумагу, а на стол. Что же нужно сделать, чтобы помочь вам?

Нужно лишь сдвинуть, сместить руку на некоторое постоянное расстояние, подвести к ней «постоянное смещение». При этом карандаш будет делать все то, что он и делал, но уже не попадет на территорию стола.

Итак, напряжение Uсиг усиливаемого сигнала суммируется с постоянным напряжением Uсм . В некоторые моменты общее напряжение между эмиттером и базой Uэб растет, в некоторые моменты – уменьшается, но оно всегда остается прямым напряжением. И, следуя за всеми изменениями, меняется и прямой ток Iэ во входной цепи транзистора. Точно так же меняется и коллекторный ток Iк , который теперь уже проходит по резистору нагрузки Rн (рис. 37).

 

 

Рис. 37. В коллекторную цепь можно включить большое сопротивление нагрузки и получить на нем большое выходное напряжение.

 

Давайте пока не обращать внимания на сравнительно небольшой ток базы Iб . Будем считать, что в нашей схеме коэффициент α = 1, то есть эмиттерный ток Iэ на все сто процентов используется для создания коллекторного тока Iк . Иными словами, любое изменение тока в цепи эмиттер – база (входная цепь) вызывает точно такое же изменение тока в цепи база – коллектор (выходная цепь). Это значит, что если, например, эмиттерный ток уменьшится на 5 ма, то на 5 ма уменьшится и коллекторный ток; увеличится Iэ на 20 ма, и на те же 20 ма возрастет и Iк . Одним словом, в эмиттерной и коллекторной цепи будут согласованно меняющиеся, всегда одинаковые по величине токи.

Эта радостная весть может вызвать весьма грустные мысли. Действительно, после долгих поисков, после странствий по океанам многих наук мы наконец построили прибор, который из слабого переменного тока делает… точно такой же слабый переменный ток! А где же усиленный сигнал? Где обещанная мощная копия?

Для беспокойства пока нет никаких оснований. То, что на выходе транзистора ток такой же, как и на его входе, еще ни о чем плохом не говорит: чтобы судить об усилении, нужно сравнивать мощности входного и выходного сигналов. А мощность – это не только ток, это еще и напряжение: P = U ·I .

Потребителем усиленного сигнала является резистор Rп и именно на нем выделяется мощность усиленного сигнала или иначе выходная мощность транзисторного усилителя Pвых . Выходная мощность может использоваться по‑разному, да и сама нагрузка усилительного каскада может быть различной (вместо Rн , например, может быть включен громкоговоритель, и тогда Pвых расходуется на создание звука). Однако какой бы ни была реальная нагрузка и на что бы ни расходовалась выходная мощность, нагрузку эту почти всегда можно представить в виде резистора Rн , а выходную мощность – как произведение переменной составляющей коллекторного тока Iк~ на переменную составляющую Uн~ напряжения, действующего на сопротивление нагрузки:

Pвых = Uн~ ·Iк~

Обратите внимание на то, что выходная мощность определяется не током и напряжением «вообще», а именно переменными составляющими тока и напряжения. Дело в том, что в коллекторной цепи так же, как и в эмиттерной, протекает пульсирующий ток. Конечно, батареи Б и Бк создают только постоянные токи Iэ и Iк , но с появлением сигнала токи начинают изменяться по величине, становятся пульсирующими.

Пульсирующий коллекторный ток можно довольно просто разделить на постоянную и переменную составляющие. Например, с помощью фильтров, которые применялись нами в выпрямителе и детекторе для разделения постоянных и переменных составляющих (рис. 27–6, 19 ). Совершенно ясно, что постоянные составляющие коллекторного тока I к = и напряжения на нагрузке Uн= нам совсем не нужны: выходной сигнал – это переменный ток и переменное напряжение, в нашем примере Iк~ и Uн~ . И, не задумываясь пока о конкретных способах выделения этих переменных составляющих, мы только их и учитываем при подсчете выходной мощности, делая вид, что постоянных составляющих I к = и Uн= просто не существует.

Поскольку мы договорились, что коллекторный ток равен эмиттерному, то, значит, равны и их переменные составляющие. Одна из них Iэ~ определяет мощность входного сигнала, другая Iк~ – мощность выходного сигнала. Теперь вопрос об усилительных способностях транзистора можно решить только одним способом: сравнить переменное напряжение Uсиг входного сигнала и выходное переменное напряжение Uвых (так мы будем в дальнейшем называть переменную составляющую Uн~ ). Если окажется, что Uвых больше, чем Uсиг , то, значит, выходная мощность больше входной и, следовательно, транзистор усиливает. Чем большее значение Uвых нам удастся получить, тем большим будет и усиление сигнала.

К эмиттерному переходу приложено напряжение усиливаемого сигнала. Если мы захотим подсчитать это напряжение, то нужно будет воспользоваться уже знакомой формулой закона Ома – U сиг = Iэ~ ·Rвх . Здесь R вх – это так называемое входное сопротивление транзистора, сопротивление, которое входной сигнал встречает со стороны эмиттерного перехода.


Дата добавления: 2019-02-12; просмотров: 131; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!