Характеристики движения тела, брошенного под углом к горизонту, по двум осям (ось Y направлена вверх)



Характеристики Ось Х Ось Y
Начальная скорость v0x = v0·cos(θ0) v0y = v0 ∙ sin 0).
Ускорение 0 g
Время полета          
Дальность полета для случая, когда точки броска и приземления находятся на одной высоте            
Максимальная высота  
Скорость в момент t vx = v0x vy = v0y—gt
Координаты в момент t х = vx . t y = v0y t -

Максимальная высота подъема    

Полет пули

Из автомата производят выстрел в горизонтальном направлении ( q 0 = 0). Начальная скорость пули v 0 = 715м/с. Расстояние до мишени х = 100 м. В нашем случае vx v 0 x = v 0 = 715 м/с; v 0 y = 0.

Из уравнения х = vxt найдем t = = 0,14с Координата точки мишени, в которую попадет пуля, находится из уравнения y= v 0 yt  = -0,1 м. Таким образом пуля опустится на 10 см. Чтобы скомпенсировать такое опускание, выстрел производят под небольшим углом вверх, для чего соответствующим образом устанавливают прицел.

Прыжок в длину с разбега (рис. 3.18)

 

Оценим теоретическую максимальную дальность прыжка в длину, определяемую физическими возможностями человека. Горизонтальную скорость v 0 x спортсмен набирает при разбеге.

Примем ее равной максимальной скорости спринтера: v 0 x = 10,5 м/с. Вертикальную скорость v0 спортсмен приобретает при отталкивании. Оценим ее исходя из того, что высота, на которую человек может поднять свой центр масс, прыгая вертикально вверх с места, приблизительно равна 0,6 м. Из формулы

 

 

Рис. 3.18. К описанию прыжка в длину с разбега

Найдем v 0 y = = 3,43 м/с. Прыгун отталкивается в вертикальном положении, а приземляется в «сидячем» положении. При этом центр масс опускается приблизительно на 0,6 м (при отталкивании центр масс находится на высоте ~1 м, а при приземлении на высоте ~0,4 м). Значит координата точки приземления у  -0,6 м.

Эта координата определяется формулой     Подставив численные значения, получим квадратное уравнение: 4,9-t 2 — 3,43∙t — 0,6 = 0. Решив его, найдем время полета t = 0,845 с. Дальность прыжка найдем из формулы s = vx  ∙ t = 8,87 м.

Движение по окружности, центростремительное и тангенциальное ускорения. Угловое ускорение

 

В природе движение тела чаще происходит по кривым линиям. Почти любое криволинейное движение можно представить как последовательность движений по дугам окружностей. В общем случае, при движении по окружности скорость тела изменяется как по величине, так и по направлению.

Равномерное движение по окружности

 

Движение по окружности называется равномерным, если величина скорости остается неизменной.

Основными характеристиками такого движения являются:

• радиус окружности R;

• скорость движения (линейная скорость) V ;

угловая скорость движения ;

• угол поворота радиуса (угловое перемещение)

Угловой скоростьютела, движущегося по окружности равномерно, называется отношение угла поворота его радиус-вектора ко времени, за которое совершен поворот:

В физике применяется радианная мера угла (безразмерная), которая определяется, как отношение длины дуги (l) к радиусу

окружности: , поэтому размерность угловой скорости —

 , рис. 3.19, а. Радиан — такой угол, длина дуги которого равна радиусу окружности. Полный поворот по окружности содержит радиан.

Рис. 3.19. Радианная мера угла (а). Центростремительное ускорение (б)

 

Между линейной и угловой скоростями существует простая связь:

Можно показать (рис. 3.19.6), что при равномерном движении по окружности вектор ускорения направлен к центру. Такое ускорение называется центростремительным.

Величина центростремительного ускорения определяется формулами

 

 

 

 

Кроме основных характеристик вращательного движения, используются следующие вспомогательные величины:

частота вращения (v), равная числу оборотов за единицу

времени: (N — число оборотов). Размерность — 1 /с.

период обращения (Т), равный времени, за которое тело совершает один оборот: . Размерность — с.

Эти величины связаны с угловой скоростью соотношениями:

Неравномерное движение по окружности

Если скорость тела, движущегося по окружности, изменяется по величине, то наряду с центростремительным ускорением ацбудет иметь место и тангенциальное ускорение at, рис. 3.20.

Рис. 3.20. Компоненты ускорения при неравномерном вращательном движении

В отличие от центростремительного ускорения, которое обусловлено изменением направления скорости, тангенциальное ускорение возникает из-за изменения величины вектора скорости:

 

 

Тангенциальное ускорение всегда направлено по касательной к окружности, и, если скорость увеличивается, его направление совпадает с направлением движения. Если же скорость уменьшается, то направление тангенциального ускорения противоположно вектору скорости. Вектора аци а τ перпендикулярны друг другу, а их сумма дает вектор полного ускорения:

а = ац + аτ.

Поскольку эти векторы всегда перпендикулярны друг другу, величина полного ускорения в любой момент времени равна:

С тангенциальным ускорением мы встречаемся в спорте. Например, раскручивая молот, спортсмен сообщает ему тангенциальное ускорение для того, чтобы он приобрел к моменту броска высокую скорость.

Кроме обычного ускорения (а), при описании неравномерного движения по окружности используют еще одну характеристику — угловое ускорение (ε).

Угловым ускорением тела называется производная от угловой скорости по времени (отношение изменения угловой скорости ко времени этого изменения, вычисленное в очень маленьком интервале данной точки траектории):

 (3.11)

Размерность ускорения в СИ — 1 /с2.

Примечание. В тех случаях, когда угловая скорость рассматривается как вектор, угловое ускорение тоже является вектором. В данном учебнике такие случаи не рассматриваются.

Можно показать, что угловое ускорение равно отношению тангенциального ускорения к радиусу окружности:

 


Дата добавления: 2019-01-14; просмотров: 220; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!