Современные методы оптимального проектирования на основе САПР



Конструирование как составная часть проектирования — это творческий процесс создания изделий в документах (главным образом чертежа) на основе теоретических расчетов, конструкторского, технологического и эксплуатационного опыта и экспериментов.

В настоящее время чрезвычайно возросли сложность и комплекс­ность проблем, требующих решения в процессе проектирования. Создание машин качественно нового уровня предполагает использование важнейших достижений фундаментальных наук, конструирования и технологии, повышенную защиту обслуживающего персонала от вибрации и шума, учет современных экономических, социальных и экологических проблем. Задача повышения качества машин решают на стадии проектирования, когда можно всесторонне проанализировать конструктивные варианты с учетом большого числа требований. Так каждая машина должна, по возможности, иметь минимальную массу и достаточную надежность, высокую быстроходность и минимальную динамическую загруженность, низкую стоимость и большой срок службы и др. При конструировании необходимо выбрать ее оптимальные параметры (структурные, кинематические, динамические, эксплуатацион­ные), наилучшим образом соответствующие предъявляемым требова­ниям. При этом следует учитывать конкретные условия применения машины. Нельзя, например, произвольно увеличить ее производитель­ность, не учитывая производительности смежного оборудования. В некоторых случаях машины с повышенной производительностью могут оказаться при эксплуатации недогруженными и будут больше простаи­вать, чем работать. Это снижает степень их использования и уменьшает экономическую эффективность.

Схему машины обычно выбирают путем параллельного анализа нескольких вариантов, оценивая их конструктивную целесообразность, совершенство кинематической и силовой схем, стоимость изготовления, энергоемкость, надежность, размеры, металлоемкость и массу, технологичность, степень агрегатности, удобство обслуживания, сборки-разборки, осмотра наладки, регулирования.

Как правило, не существует машины или конструкции, оптималь­ной по всем критериям одновременно. Поэтому расчеты производят для каждого критерия, строят таблицы результатов расчетов и используют их для обоснования выбора оптимального решения.

Зная возможности конструкции по всем критериям, конструктор совместно с заказчиком может обоснованно назначить на каждый из них ограничения, которые, с одной стороны, были бы практически достижимы, а с другой — удовлетворяли требованиям заказчика. Далее путем расчета выявляют конструкции, удовлетворяющие всем ограниче­ниям одновременно.

Такие конструкции и составляют допустимое множество решений, из которого конструктор совместно с заказчиком выбирает оптимальную модель. Если таких конструкций не оказалось, то ограничения могут быть «ослаблены».

Из вышеизложенного следует, что развитие техники сопровождается усложнением всех систем машин и технологического оборудования. Возрастает трудоемкость их создания при одновременном повышении требований к качеству и эффективности конструкции, что находится в противоречии с необходимостью сокращения сроков ее разработки и промышленного освоения. Ликвидация указанного противоречия наиболее полно реализуется при широком внедрении в проектирование вычислительной техники. Основное направление при этом — создание систем автоматизированного проектирования (САПР).

Под автоматизацией проектирования понимают такой способ проектирования, при котором все проектные операции и процедуры или их часть осуществляется посредством взаимодействия человека и ЭВМ. Использование ЭВМ, по данным А.В. Алферова, при проектировании станочных приспособлений повышает производительность труда конструкторов в 5-10 раз. Это же подтверждают данные Рурского университета (ФРГ), согласно которым машинное выполнение рабочего чертежа детали производится в 10 раз быстрее, чем вручную, а стоимость работы уменьшается в 2 раза.

Оптимизация конструктивных решений в ряде случаев вообще невозможна без применения ЭВМ. Любая проектно-конструкторская задача имеет, как правило, множество решений, одно из которых может оказаться более экономичным или эффективным по сравнению со всеми остальными решениями. Этот вариант и является оптимальным, который можно подобрать только с помощью ЭВМ.

Наилучшей формой организации процесса проектирования является применение систем автоматизированного проектирования (САПР), то есть комплекса средств автоматизация проектирования, взаимосвязанного с подразделениями проектной организации и выполняющего автоматизированное проектирование.

Целями создания САПР как организационно-технической (человеко-машинной) системы являются:

1. Повышение качества проектирования вследствие увеличения, анализируемыеконструкторских решений и более детального анализа каждого из них. Сокращение срока разработки конструкции за счет автоматизации выполнения чертежных работ и расчетов, обработки исходной и полученной информации;

2. Уменьшение стоимости проектных работ путем сокращения их части, выполняемой без использования ЭВМ.

Эти цели достигаются применением совершенных математических методов и вычислительной техники, разработкой эффективных математи­ческих моделей, методов многовариантного проектирования и оптимиза­ции, автоматизацией проведения расчетов и оформления графической документации.

Таким образом, использование САПР дает конструктору реальную возможность обосновать постановку задачи многокритериальной опти­мизации — одновременно учитывать множество противоречий требова­ний. Использование САПР предполагает активное участие человека в анализе вариантов, оптимизации и принятии решений. Такой творческий подход к проектированию характерен и для учебного проектирования приводов технологических машин, так как все задачи в нем многокрите­риальные и содержат множество управляемых параметров.

Оптимальное проектирование предполагает создание технического объекта не только выполняющего заданные функции, но и отвечающие некоторым заранее установленным критериям качества.

Самый низкий уровень оптимального проектирования предполагает нахождение лучшего варианта конструкции, основанное на подборе нескольких, выполненных без использования вычислительной техники, математических моделей и соответствующих методов оптимизации вариантов. Например, при проектировании редуктора для двух-трех вариантов разбивки общего передаточного числа между отдельными ступенями можно выполнить проектировочные расчеты, для каждого варианта оценить какой-либо критерий качества (масса, размеры и т. д.), и затем окончательно выбрать наиболее подходящий вариант испол­нения редуктора.

При более высоком уровне задачи оптимального проектирования, сформулированные в виде математических моделей, решаются с применением соответствующих математических методов оптимизации и на базе ЭВМ. К высшему уровню относятся задачи оптимального проектирования, решаемые в рамках САПР.

В САПР задачи оптимизации могут решаться на всех этапах процесса проектирования. Так, на этапе эскизной проработки задача оптимального проектирования может состоять в определении рациональных значений необходимого числа основных параметров проекта, определяющих будущий облик технического объекта. На этапах технического и рабочего проектирования задачи оптимизации могут носить более глубокий характер, охватывающий вопросы определения оптимальных значений основных параметров как объекта в целом, так и отдельных узлов и деталей. В процессе разработки САПР проблема оптимального проектиро­вания заключается в решении следующих основных вопросов:

1) определение этапов процесса автоматизированного проектирования, сопровождаемых решением тех или иных задач оптимизации;

2) построение математических моделей оптимизации и разработка машинных алгорит­мов;

3) создание или заимствование программного обеспечения решения задач оптимизации;

4) разработка системы диалогового формирования и просмотра вариантов объекта проектирования с определением значений тех или иных показателей качества, а также формирования математичес­ких моделей и управления процессом решения соответствующих задач.

Совершенствование конструкции при проектировании обеспечивается ее оптимизацией по одному или нескольким критериям. Для различных механизмов критериями эффективности конструкции могут быть приняты: высокая надежность, минимальное межосевое расстояние или масса, размеры и стоимость, наибольший КПД, высокая точность и т. д. При этом часто критерии могут быть противоречивыми.

При структурной оптимизации можно анализировать различные типы редукторов, например, многоступенчатый цилиндрический, планетарный, волновой, комбинированный. Исходные данные при проектировании механизмов в соответствии с техническим заданием могут включать следующие характеристики: мощность, скорость, ресурс, режим работы, циклограмма нагружения и т. д.

При параметрической оптимизации, например, зубчатых приводов управляющими параметрами могут быть: распределение передаточных чисел по ступеням, числа зубьев, относительная ширина и материал колес, геометрия зацепления, частота вращения двигателя и др.

Ограничения разделяют на кинематические (по передаточному числу одной пары, предельным окружным скоростям), прочность (по условиям контактной и изгибной прочности зубчатых колес), конструктивные (по габаритам, условию регулирования элементов, их взаимо­действию и соединению) и др.

При оптимизации по одному критерию задача решается наиболее просто. Например, решение можно получить перебором различных вариантов конструкции и выбором наилучшего.

Решение многокритериальных задач более сложно. Многокрите­риальная оптимизация используется, когда одного критерия для оценки качества недостаточно. Например, когда стоит задача обеспечения максимальной надежности и минимальной массы при проектировании редуктора или обеспечения максимальной грузоподъемности и мини­мальных размеров при проектировании транспортной машины.

В строгой математической постановке выбор оптимальных парамет­ров машины не простая задача. Так, например, варьирование всего шести параметров (при 5% точности расчета) приводит к поиску на всем множестве решений из (1/0,05)6 = 64 000 000 вариантов. В условиях развития САПР формализация процесса автоматизированного поиска технических решений и оптимизация параметров машиностроительных узлов вызывает значительные трудности и требует применение специальных эвристических методов принятия решений, численных методов оптимизации и больших ресурсов по времени и мощности ЭВМ.

При конструировании приводов машин в силу технической целесооб­разности используются в основном два критерия: масса и объем. Массогабаритные характеристики в значительной степени зависят от выбора материала и термообработки. Недостаточность на начальном этапе исходной информации предопределяет проведение как проектиро­вочных, так и проверочных расчетов. При поисковом расчете сначала задаются некоторыми исходными параметрами, а затем — рядом последо­вательных приближений их уточняют. Механические приводы машин представляют собой совокупность подсистем передач, валов, опор, связанных слабыми связями.

Из изложенного следует, что конструирование — многовариантно. Оптимальным в общем случае следует считать вариант, который обеспечивает нужные показатели работы при минимальных затратах труда.

 

Виды САПР

Различают следующие четыре вида САПР.

Уникальные САПР, имеющие межотраслевой характер и создаваемые для решения крупнейших народнохозяйственных задач. Эти сверхбольшие системы представляют собой сети ЭВМ и вычислительных центров. В рамках таких систем возможно существенное наращивание вычислительных мощностей, создание межотраслевых банков данных и т.п..

Универсальные САПР отраслевого назначения с системой коллективного пользования, обеспечивающие проектирование всей номенклатуры технических изделий отрасли. Такие САПР обычно строятся по двухуровневому иерархическому принципу: на первом уровне - мощная ЭВМ с большим объемом памяти и высоким быстродействием; на втором - периферийные ЭВМ, обслуживающие отдельные терминалы, устройства, абонентские пульты. Годовой объем проектной документации, создаваемый такой САПР, достигает 100 тысяч документов.

Специализированные САПР проектной организации, представляющие собой также системы коллективного пользования, но ориентированные на выполнение наиболее массовых проектных работ по конкретным изделиям и реализованные на ЭВМ серии ЕС или СМ.

С помощью таких систем проектировщик получает возможность использовать эффективные математические модели, методы моделирования и оптимизации на всех основных стадиях проектирования заданного объекта. Ниже в качестве примера будет рассмотрена структура одной из таких САПР.

Индивидуальные САПР, реализованные на мини - и микроЭВМ, предназначенные для выполнения отдельных видов инженерных расчетов и проектных работ. К этому виду САПР можно отнести и Автоматизированные Рабочие Места (АРМы), построенные на мини-ЭВМ. Ниже в качестве иллюстрации будет дано краткое описание АРМ "Автограф - 840".

Любая система автоматизированного проектирования представляет собой организационно-технический комплекс, состоящий из большого количества взаимосвязанных и взаимодействующих компонентов. Основной функцией САПР является автоматизированное проектирование технических объектов и их составных частей на основе применения математических и других моделей, автоматизированных проектных процедур и средств вычислительной техники.

Интегрированная САПР выполняет проектирование объекта от первичного описания до выдачи проекта, содержащего весь необходимый комплекс документации.

САПР является самостоятельной системой на предприятии (отдел САПР, бюро САПР). Но она может быть связана с подсистемами и банками данных других автоматизированных систем предприятия иди даже других организаций и предприятий: с автоматизированной системой научных исследований (АСНИ), обеспечивающей получение и обработку математических моделей для различных объектов и процессов; с автоматизированной системой управления (АСУ), организующей проектирование и распределение ресурсов на проектные работы; с автоматизированной системой управления производством (АСУП), для которого предназначен проектируемый объект, как предмет производства. Научно-технический уровень САПР во многом определяется этими связями, их полнотой и интенсивностью. Связи осуществляются по телефонному, кабельному каналам связи.

Перспективной в настоящее время является разработка системы спутниковой связи САПР, расположенных в различных регионах страны, с мощными централизованными банками данных.

САПР следует рассматривать как постоянно развивающуюся (эволюционную) систему. Здесь наблюдается определенная аналогия между сложными техническими и биологическими системами.

Одним из проявлений этого развития является передача опыта и интуиции проектировщика машинной среде. При этом в ЭВМ создается определенная модель процесса проектирования, а сам человек под воздействием информационно-программной среды САПР повышает свой интеллектуальный уровень.

В соответствии с ГОСТ 23501.0-79 любая САПР должна иметь следующие виды базового обеспечения: методическое, программное, техническое, информационное и организационное.

Компоненты этих видов обеспечения приведены в табл.1.

Таблица 1. Основные компоненты САПР

Виды базовых обеспечений Компоненты Основы построения
Методическое (математическое и лингвистическое) Теории, методы, способы, математические модели, алгоритмы, терминология, нормативы, алгоритмические и специальные языки, обеспечивающие методологию проектирования в САПР. Перспективные методы проектирования, эффективные математические модели проектируемых объектов и их элементов, применение методов многовариантного проектирования и оптимизации.
Программное Общесистемные и прикладные программы и эксплуатационные документы, предназначенные для получения проектных решений. Адаптируемость к различным конфигурациям ЭВМ и их операционным системам, модульность построения, обеспечения мультипрограммной работы, режим диалога, режим разделения времени.
Техническое Устройства вычислительной и организационной техники, средства передачи данных, измерительные и другие устройства, обеспечивающие функционирование САПР. Серийные средства вычислительной техники общего назначения и другие современные технические средства.
Информационное Базы данных и системы управления базой данных (СУБД), образующие в комплексе автоматизированные банки данных (АБД). Возможность логической структуризации данных по формальным признакам, гибкость организации и открытость структуры, защита данных.
Организационное Правила и приказы, регламентирующие права, обязанности и функции участников разработки и эксплуатации САПР: проектировщиков-пользователей САПР, программистов, операторов ЭВМ и внешних устройств, операторов банка данных (группы поддержки банка данных) и администратора САПР. Прогрессивные методы организации проектирования, современные методы планирования и материального стимулирования.

 

САПР отличается от обычной системы проектирования тем, что в ней с помощью ЭВМ частично или полностью автоматизированы процедуры подготовки и обработки информации, выбора принципов действия технических объектов и принятия решения, выполнения расчетно-вычислительных работ, проектирования документации.

Система автоматизированного проектирования в сравнении с обычной характеризуется рядом свойств, обусловленных широким применением ЭВМ: модифицированной организационной структурой, специализацией разработчиков по выполняемым видам работ (а не по типам разрабатываемых изделий), полной механизацией и автоматизацией рутинных операций, широким использованием технических средств проектирования, высоким профессиональным уровнем проектировщиков-пользователей САПР, ориентацией на наиболее творческие процедуры генерации вариантов решения и гипотез.

 


Дата добавления: 2019-01-14; просмотров: 1150; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!