При твердении протекает реакция 9 страница



P + HClO3 + H2O → H3PO4 + HCl

H3AsO3 + KMnO4 + H2SO4 → H3AsO4 + MnSO4 + K2SO4 + H2O

 

232. См. условие задачи 222

NaCrO2 + Br2 + NaOH → Na2CrO4 + NaBr + H2O

FeS + HNO3 →Fe(NO3)2 + S + NO + H2O

 

233. Составьте электронные уравнения и укажите, какой процесс — окисление или восстановление — происходит при следующих превращениях:

    As3- → As5+; N3+ → N3-; S2-→ So

На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме

    Na2SO3 + KMnO4 + H2O → Na2SO4 + MnO2 + KOH

 

234. Исходя из степени окисления фосфора в соединениях РН3, H3РO4, Н3РО3, определите, какое из них является только окислителем, только восстановителем и какое может проявлять как окислительные, так и восстановительные свойства. Почему? На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме

PbS + HNO3 → S + Pb(NO3)2 + NO + H2O

 

235. См. условие задачи 222.

P + HNO3 + H2O → H3PO4 + NO

KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O

236. Составьте электронные уравнения и укажите, какой процесс — окисление или восстановление — происходит при следующих превращениях:

Mn6+ → Mn2+; Cl5+  → Cl-; N3- → N5+

На основании электронных уравнений расставьте коэффициенты в уравнении реакции, идущей по схеме

    Cu2O + HNO3 → Cu(NO3)2 + NO + H2O

 

237. См. условие задачи 222.

HNO3 + Ca → NH4NO3 + Ca(NO3)2 + H2O

K2S + KMnO4 + H2SO4 → S + K2SO4 + MnSO4 + H2O

 

238. Исходя из степени окисления хрома, йода и серы в соединениях K2Cr2O7, КI и Н23, определите, какое из них является только окислителем, только восстановителем и какое может проявлять как окислительные, так и восстановительные свойства. Почему? На основании электронных уравнений расставьте, коэффициенты в уравнении реакции, идущей по схеме

NaCrO2 + PbO2 + NaOH → Na2CrO4 + Na2PbO2 + H2O

 

239. См. условие задачи 222.

H2S + Cl2 + H2O → H2SO4 + HCl

K2Cr2O7 + H2S + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O

 

240. См. условие задачи 222.

KClO3 + Na2SO3 → KCl + Na2SO4

KMnO4 + HBr → Br2 + KBr + MnBr2 + H2O

 

 

ТЕМА: Электронные потенциалы и электродвижущие силы

При решении задач этого раздела см. табл. 7.

Если металлическую пластинку опустить в воду, то катионы металла на ее поверхности гидратируются полярными молекулами воды и переходят в жидкость. При этом электроны, в избытке остающиеся в металле, заряжают его поверхностный слой отрицательно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла. В результате этого в системе устанавливается подвижное равновесие:

 

Ме + mH2O ↔ Me(H2O)m n + + n ē

              в растворе на металле

 

где n — число электронов, принимающих участие в процессе. На границе металл — жидкость возникает двойной электрический слой, характеризующийся определенным скачком потенциала — электродным потенциалом. Абсолютные значения электродных потенциалов измерить не удается. Электродные потенциалы зависят от ряда факторов (природы металла, концентрации, температуры и др.). Поэтому обычно определяют относительные электродные потенциалы в определенных условиях — так называемые стандартные электродные потенциалы (Е°).

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью), равной 1 моль/л, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 25°С условно принимается равным нулю (Е° = 0; ∆G° = 0).

Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (Е°), получаем так называемый ряд напряжений.

Положение того или иного металла в ряду напряжений характеризует его, восстановительную способность, а также окислительные свойства его ионов в водных растворах при стандартных условиях. Чем меньше значение Е°, тем большими восстановительными способностями обладает данный металл в виде простого вещества и тем меньшие окислительные способности проявляют его ионы, и наоборот. Электродные потенциалы измеряют в приборах, которые получили название гальванических элементов. Окислительно-восстановительная реакция, которая характеризует работу гальванического элемента, протекает в направлении, в котором ЭДС элемента имеет положительное значение. В этом случае ∆ G ° < 0, так как ∆ G ° = — nFE°.

Пример 1. Стандартный электродный потенциал никеля больше, чем кобальта (табл. 8). Изменится ли это соотношение, если измерить потенциал никеля в растворе его ионов с концентрацией 0,001 моль/л, а потенциал кобальта — в растворе с концентрацией 0,1 моль/л?

Решение. Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Е = Е° + lg C

где Е° — стандартный электродный потенциал; n — число электронов, принимающих участие в процессе; С — концентрация (при точных вычислениях — активность) гидратированных ионов металла в растворе, моль/л; Е° для никеля и кобальта соответственно равны —0,25 и —0,277 В. Определим электродные потенциалы этих металлов при данных в условии концентрациях:

ENi2+/ Ni = =-0,339 В,

ECo2+/ Co = =-0,307 В,

Таким образом, при изменившейся концентрации потенциал кобальта стал больше потенциала никеля.

 

Таблица 7.Стандартные электродные потенциалы (Eo), некоторых металлов (ряд напряжений)

 

Электрод

Eo, В

Электрод

Eo, В

Li+/Li

-3,045

Cd2+/Cd

-0,403

Rb+/Rb

-2,925

Co2+/Co

-0,277

K+/K

-2,924

Ni2+/Ni

-0,25

Cs+/Cs

-2,923

Sn2+/Sn

-0,136

Ba2+/Ba

-2,90

Pb2+/Pb

-0,127

Ca2+/Ca

-2,87

Fe3+/Fe

-0,037

Na+/Na

-2,714

2H+/H2

-0,000

Mg2+/Mg

-2,37

Sb3+/Sb

+0,20

Al3+/Al

-1,70

Bi3+/Bi

+0,215

Ti2+/Ti

-1,603

Cu2+/Cu

+0,34

Zr4+/Zr

-1,58

Cu+/Cu

+0,52

Mn2+/Mn

-1,18

Hg22+/2Hg

+0,79

V2+/V

-1,18

Ag+/Ag

+0,80

Cr2+/Cr

-0,913

Hg2+/Hg

+0,85

Zn2+/Zn

-0,763

Pt2+/Pt

+1,19

Cr+3/Cr

-0,74

Au3+/Au

+1,50

Fe2+/Fe

-0,44

Au+/Au

+1,70

 

Пример 2. Магниевую пластинку опустили в раствор её соли. При этом электродный потенциал магния оказался равен —2,41 В. Вычислите концентрацию ионов магния (в моль/л).

Решение. Подобные задачи также решаются на основании уравнения Нернста (см. пример 1):

-2,41=-2,37+ lgC,

-0,04=0,0295lgC,

lgC= -1,3559 = - 2,6441

СMg2+= моль/л

Пример 3. Составьте схему гальванического элемента, в котором электродами являются магниевая и цинковая пластинки, опущенные в растворы их ионов с активной концентрацией 1 моль/л. Какой металл является анодом, какой катодом? Напишите уравнение окислительно-восстановительной реакции, протекающей в этом гальваническом элементе, и вычислите его ЭДС.

Решение. Схема данного гальванического элемента

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки - границу раздела двух жидких фаз - пористую перегородку -(или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (-2,37 В) и является анодом, на котором протекает окислительный процесс:

                                                             (1)

Цинк, потенциал которого -0,763 В - катод, т. е. электрод, на котором протекает восстановительный процесс:

                                                              (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода. Так как концентрация ионов в растворе равна  1 моль/л, то ЭДС элемента равна разности стандартных потенциалов двух его электродов:

 

Контрольные вопросы

241. При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором  один никелевый  электрод  находится в 0,001 М растворе, а другой такой же электрод — в 0,01 М растворе сульфата никеля. Ответ: 0,0295 В.

242. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [ Рb2+ ] = [Мg2+ ] = 0,01 моль/л. Изменится ли ЭДС этого элемента, если концентрацию каждого из ионов увеличить в одинаковое число раз? Ответ: 2,244 В.

243. Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.

244. Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде.

245. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опушенных в растворы своих солей с концентрацией [Mg2+] = [Cd2+] = 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить до 0,01 моль/л? Ответ: 1.967 В.

246. Составьте схему гальванического элемента, состоящего из пластин цинка и железа, погруженных в растворы их солей. Напишите электронные уравнения процессов, протекающих на аноде и на катоде. Какой концентрации надо было бы взять ионы железа (моль/л), чтобы ЭДС элемента стала равной нулю, если [Zn2+] = 0,001 моль/л? Ответ: 7,3·10-15 моль/л.

247. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению

Ni + Pb(NO3)2 = Ni(NO3)2 + Pb

Напишите электронные уравнения анодного и катодного процессов. Вычислите ЭДС этого элементе, если [Ni2+ ] = 0,01 моль/л, [Pb2+] = 0,0001 моль/л. Ответ: 0,064 В.

248. Какие химические процессы протекают на электродах при зарядке и разрядке свинцового аккумулятора?

249. Какие химические процессы протекают на электродах при зарядке и разрядке кадмий-никелевого аккумулятора?

250. Какие химические процессы протекают на электродах при зарядке и разрядке железо-никелевого аккумулятора?

251. В два сосуда с голубым раствором медного купороса, поместили в первый цинковую пластинку, а во второй серебряную. В каком сосуде цвет раствора постепенно пропадает? Почему? Составьте электронные и молекулярное уравнения соответствующей реакции.

252. Увеличится, уменьшится или останется без изменения масса цинковой пластинки при взаимодействии ее с растворами: a) CuSО4; б) MgSО4;                     в) РЬ(NO3)2? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

253. При какой концентрации ионов Zn2+ (в моль/л) потенциал цинкового электрода будет на 0,015 В меньше его стандартного электродного потенциала? Ответ: 0,30 моль/л

254. Увеличится, уменьшится или останется без изменения масса кадмиевой пластинки при взаимодействии ее с растворами: а) AgNO3; б) ZnSO4; в) NiSO4? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.

255. Марганцевый     электрод   в  растворе  его  соли имеет   потенциал —1,23 В. Вычислите концентрацию ионов Мn2+ (в моль/л). Ответ: 2,02 · 10-2 моль/л.

256. Потенциал серебряного электрода в растворе АgNO3 составил 95% от значения его стандартного электродного потенциала. Чему равна концентрация ионов Аg+ (в моль/л)? Ответ: 0,20 моль/л.

257. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС медно-кадмиевого гальванического элемента, в котором [Cd2+] = 0,8 моль/л, а [Сu2+] = 0,01 моль/л. Ответ: 0,68 В.

258. Составьте схемы двух гальванических элементов, в одном из которых медь была бы катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.

259. При какой концентрации ионов Сu2+ (моль/л) значение потенциала медного электрода становится равным стандартному потенциалу водородного электрода? Ответ: 1,89 · 10-12 моль/л.

260. Какой гальванический элемент называется концентрационным? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из серебряных электродов, опущенных: первый в 0,01 н., а второй в 0,1 н. растворы AgNO3. Ответ: 0,059 В.

 

ТЕМА: Электролиз

Пример 1. Какая масса меди выделится на катоде при электролизе раствора CuSО4 в течение 1 ч при силе тока 4 А?

Решение. Согласно законам Фарадея

                                                              (1)

где m - масса вещества, окисленного или восстановленного на электроде, г; Э - эквивалентная масса вещества, г/моль; I - сила тока, A; t - продолжительность электролиза, с. Эквивалентная масса меди в CuSО4 равна 63,54:2 = 31,77 г/моль. Подставив в формулу (1) значения Э = 31,77; I =4 A, t = 60 · 60 =3600 с, получим


Дата добавления: 2018-11-24; просмотров: 157; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!