Математическое моделирование при принятии решений



 

     Математическое моделирование экономических явлений и процессов с целью обеспечения принятия решений - область научно-практической деятельности, получившая мощный стимул к развитию во время и сразу после второй мировой войны. Эта тематика развивалась в рамках интеллектуального движения, связанного с терминами "кибернетика" (в нашей стране для ее развития много сделал Научный Совет АН СССР по комплексной проблеме "Кибернетика"), "исследование операций", а позже - "системный анализ", "информатика".

     Впрочем, имелась и вполне практическая задача - контроль качества боеприпасов, вышедшая на первый план именно в годы второй мировой войны. Методы статистического контроля качества приносят (по западной оценке, обсуждаемой в [13], и по нашему мнению, основанному на опыте СССР и России, в частности, анализе организационно-экономических результатов работы служб технического контроля на промышленных предприятиях) наибольший экономический эффект среди всех экономико-математических методов принятия решений. Только дополнительный доход от их применения в промышленности США оценивается как 0,8 % валового национального продукта США, т.е. 24 миллиардов долларов (в ценах 2003 г.).

     Для ориентации в практически необозримом море математических моделей экономических явлений и процессов (короче: экономико-математических моделей), необходима их классификация. Первым основанием для классификации служит отношение к практической деятельности. Экономико-математические модели делятся на:

     1) ориентированные на практическое использование (примерами служат модели статистического контроля, с помощью которых принимается решение о приемке или забраковании партии конкретной продукции),

     2) модели, которые практически использовать невозможно (примерами служат модели "основного уравнения количественной теории денег" или "спирали ЦЕНЫ - ЗАРПЛАТА" в учебнике макроэкономики [14]).

     Экономико-математическое моделирование. Лучшее введение в проблемы построения экономико-математических моделей, особенно ориентированных на практическое использование в задачах принятия решений - это книги Н.Н.Моисеева [15] и В.А. Лотова [16]. Общие проблемы математического моделирования реальных явлений и систем рассматриваются в монографиях Н.П.Бусленко [17], Дж.Кемени и Дж.Снелла [18] , Н.Н.Моисеева [3, 19], Дж. фон Неймана и О.Моргенштейна [20] и многих иных монографиях. Имеется большое число сборников научных статей, посвященных математическим моделям в экономике. Отметим большое практическое значение моделей логистики или, в другой терминологии, управления запасами [7, 21]. В последние годы интерес вызывает моделирование финансового рынка.

     Важная проблема - учет неопределенности. Основное место она занимает в вероятностно-статистических моделях экономических и социально-экономических явлений и процессов. Проблемы устойчивости (к допустимым отклонениям исходных данных и предпосылок модели) для социально-экономических моделей рассматриваются в [7].

     Особое место занимают имитационные системы, позволяющие отвечать на вопросы типа: "Что будет, если...?" (Как подчеркнуто в [3, с.212], «любая модель, в принципе, имитационная, ибо она имитирует реальность».) Основа имитации (смысл которой мы будем понимать как анализ экономического явления с помощью вариантных расчетов) - это математическая модель. Согласно [3, с.213] имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты. Таким образом, под имитацией понимается численный метод проведения машинных экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени [5, с.9], при этом имитационный эксперимент состоит из следующих 6 этапов:

     1) формулировка задачи,

     2) построение математической модели,

     3) составление программы для ЭВМ,

     4) оценка пригодности модели,

     5) планирование эксперимента,

     6) обработка результатов эксперимента.

Несколько иной (более подробный) список этапов дан в [22]. Имитационное моделирование (simulation modelling) широко применяется в различных областях, в том числе в экономике [5]. Наиболее перспективным представляется синтез экспертных систем и математических моделей, впервые осуществленный в нашей стране еще в 70-е годы [23].

     Математические методы в экономике. При построении, изучении и применении экономико-математических моделей принятия решений используются различные математические методы, именуемые в данном контексте экономико-математическими (хотя они, как правило, могут с успехом использоваться вне экономики, как, в частности, эконометрические методы анализа эмпирических экономических данных). По математическим методам в экономике имеются многочисленные монографии и сборники статей. Экономико-математические методы можно разделить на несколько групп:

     - методы оптимизации,

-   - методы, учитывающие неопределенность, прежде всего вероятностно-статистические,

     - методы построения и анализа имитационных моделей,

     - методы анализа конфликтных ситуаций (теории игр).

Во всех этих группах можно выделить статическую и динамическую постановки. При наличии фактора времени используют дифференциальные уравнения и разностные методы.

     Рассмотрим перечисленные группы методов по отдельности.

     Методы оптимизации. Со времен классических работ [24, 25] нобелевского лауреата по экономике академика АН СССР Л.В.Канторовича один из основных классов экономико-математических методов - это методы оптимизации. Оптимальному управлению на основе экономико-математических моделей посвящена обширная литература [22, 26], в ней используются такие термины, как оптимальное программирование и оптимальное планирование. В случае одного критерия принципиальных сложностей нет - применяют диалоговые компьютерные системы. Сложные проблемы - это выбор целевых функций [27], оценка устойчивости принципов оптимальности [7], многокритериальность [28]. Для построения моделей с целью принятия решений используют теорию полезности [29].

     Вероятностно-статистические модели.      Исходная научная база таких моделей - теория вероятностей и математическая статистика. Выделяют как самостоятельное направление прикладную статистику. Она включает в себя прикладную математическую статистику, ее программное обеспечение и методы сбора статистических данных и интерпретации результатов расчетов. Только первая из этих трех областей одновременно входит и в математическую статистику. Последняя включает в себя также чисто математическую область, в которой статистические структуры рассматриваются как математические объекты. Они изучаются внутриматематическими методами. Эту область научных исследований в ряде публикаций называют "аналитической статистикой". Таким образом, математическая статистика состоит из прикладной математической статистики, ориентированной на практическое применение, и ветви чистой математики под названием "аналитическая статистика", полезность которой для применений не подтверждена. Можно всю жизнь доказывать теоремы в аналитической статистике, ни разу не обработав реальные данные и даже не думая об этом. В настоящее время аналитическая статистика постепенно вытесняет прикладную математическую статистику из научных журналов и учебных курсов. Так, в основном в России журнале по теории вероятностей и математической статистике "Теория вероятностей и ее применения" уже почти не встретишь статей, имеющих отношение к работе с реальными данными (см. ниже критику т.н. "математической экономики").

     Статистические методы активно применяются в различных областях экономики, причем в России - уже более 150 лет. Как известно, эконометрика (или эконометрия) - это статистические методы анализа эмпирических экономических данных [4]. Однако в нашей стране этот термин употреблялся почти исключительно в переводной литературе [30-38].

     Имеются многочисленные публикации по различным конкретным разделам прикладной статистики и эконометрии:

     - по регрессионному анализу (методам восстановления зависимости и построения моделей, прежде всего линейных);

     - по планированию эксперимента;

     - по методам классификации (дискриминантного анализа, кластер-анализа, автоматической классификации, распознавания образов, систематики и типологии, теории группировок);

     - по многомерному статистическому анализу экономической информации;

     - по методам анализа и прогнозирования временных рядов;

     - по теории робастности (robustness), т.е. устойчивости статистических процедур к допустимым отклонениям исходных данных и предпосылок модели [4, 7],

     - по использованию различных индексов [39], в частности, индекса инфляции [4].

     Основной журнал в России, в котором публикуются исследования по прикладной статистике и особенно по планированию эксперимента - это "Заводская лаборатория" (секция "Математические методы исследования").

     Статистика объектов нечисловой природы. С 1970-х годов все большее значение приобретает область статистических методов, посвященная анализу статистических данных нечисловой природы, т.е. результатов измерений по качественным и разнотипным признакам; бинарных отношений (ранжировок, разбиений (классификаций), толерантностей и др.); результатов парных сравнений; векторов из 0 и 1 (люсианов); множеств, нечетких множеств; текстов; как обобщение - элементов пространств произвольной природы, в которых нет линейной структуры, но есть метрика или показатель различия [4]. Сводка основных подходов и результатов статистики объектов нечисловой природы, или статистики нечисловых данных, дана в монографиях [4, 7, 40, 41], сборнике статей [42].

     Большое значение для развития статистики объектов нечисловой природы в России имела монография Дж. Кемени и Дж.Снелла [18] и работы по теории измерений [43, 44]. В применении к теории средних удалось установить вид средних величин, адекватных тем или иным шкалам измерения [7], что имеет отношение также к социально-политическим исследованиям, в частности, к теории рейтингов. Теория измерений применялась в социологии (Ю.Н.Толстова) и других областях (подробнее см. главу 2.1 выше).

     Одно из основных применений статистики объектов нечисловой природы - теория и практика экспертных оценок, связанные с теорией статистических решений [45-47] и проблемами голосования.

     Большое значение придается различным способам описания неопределенности. Традиционное вероятностно-статистическое описание с интуитивной точки зрения применимо лишь к массовым событиям. Для единичных событий целесообразно применять теорию субъективных вероятностей и теорию нечетких множеств (fuzzy sets). которая развивалась ее основателем Л.Заде для описания суждений человека, для которого переход от "принадлежности" к множеству к "непринадлежности" не скачкообразен, а непрерывен. Первой монографией российского автора по теории нечеткости была книга А.И.Орлова [41]. По теории нечеткости сейчас уже имеется большое число публикаций. Давно обсуждаются связи между теорией нечеткости и теорией вероятностей. В [7] доказано, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств, однако эта связь носит, возможно, чисто теоретический характер.

     В 1980-е годы стала развиваться интервальная статистика [4, 48, 49] - часть статистики нечетких данных, в которой функция принадлежности, описывающая размытость, принимает значение 1 на некотором интервале, а вне его - значение 0. Другими словами, исходные данные, в том числе элементы выборки - не числа, а интервалы. Интервальная статистика тем самым связана с интервальной математикой, в частности, с интервальной оптимизацией.

     Теория конфликтных ситуаций (теория игр). Теория игр (более подходящее название - теория конфликта, или теория конфликтных ситуаций) зародилась как теория рационального поведения двух игроков с противоположными интересами. Она наиболее проста, когда каждый из них стремится минимизировать свой средний проигрыш, т.е. максимизировать свой средний выигрыш. Отсюда ясно, что теория игр склонна излишне упрощать реальное поведение в ситуации конфликта. Участники конфликта могут оценивать свой риск по иным критериям. В случае нескольких игроков возможны коалиции. Большое значение имеет устойчивость точек равновесия и коалиций.

     В экономике еще 150 лет назад теория дуополии (конкуренции двух фирм) О.Курно была развита на основе соображений, которые мы сейчас относим к теории игр. Новый толчок дан классической монографией Дж. фон Неймана и О.Моргенштейна [20], вышедшей вскоре после второй мировой войны. В учебниках по экономике обычно разбирается "дилемма заключенного" и точка равновесия по Нэшу (ему присуждена Нобелевская премия по экономике за 1994 г.).

     По теории игр имеется обширная литература, часть из которой непосредственно адресована экономистам. Однако в практической работе теория игр почти не используется. Если же это происходит, то она обычно выступает как часть более широкого подхода, ассоциированного с терминами "принятие решений" [45, 46], "конфликтная ситуация" [50].

     Критика математической экономики. Второе из указанных во введении к подразделу направлений экономико-математического моделирования, т.е. посвященное моделям, которые непосредственно использовать в практической работе невозможно, обычно связывается с термином "математическая экономика". О нем акад. РАН Н.Н.Моисеев писал:

     "...Имеется развитое направление исследований, получившее название математической экономики. В работах, относящихся к этому направлению, изучаются свойства математических моделей, построенных на основе формализации некоторых понятий экономической науки, таких как, например, конкурентное равновесие. Используя некоторые предположения о функциональных зависимостях (например, о выпуклости функций и множеств), исследователи анализируют общие свойства моделей - доказывают теоремы о существовании экстремальных значений тех или иных параметров, изучают свойства точек равновесия, траекторий равновесного роста и т.д. Эти исследования содействовали становлению экономико-математических методов, помогали и помогают отточить математические методы, используемые в прикладных исследованиях. Однако с развитием математической экономики рассматриваемые в ней проблемы все более уходили от экономической реальности и становились чисто математическими. В результате этого в настоящее время математическая экономика представляет собой своеобразный раздел математики, изучающий математические конструкции, которые лишь с большой степенью произвола можно назвать экономическими моделями..." (из предисловия к учебному пособию А.В. Лотова "Введение в экономико-математическое моделирование" [16, с.6]).

     В чем причины отмеченных акад. Н.Н.Моисеевым недостатков в развитии математической экономики? Одна из них такова. В теоретическую и практическую экономику устремилось большое число людей из других сфер деятельности, которые хотят получать деньги как экономисты, но не хотят становиться ими по существу. В частности, большой вред наносят математики, выдающие себя за экономистов. Чтобы подтвердить свои претензии, они используют экономические термины для обозначения математических понятий, а затем доказывают свои любимые теоремы и требуют того же от студентов, а также добиваются финансирования, заявляя о своих достижениях в экономической науке. Беда, однако, в том, что эти теоремы не нужны для практической деятельности экономистов. Однако это не волнует математиков, выдающих себя за экономистов, как не волнуют и растрата денег налогоплательщиков и спонсоров, и судьбы студентов, которые потратят годы учебы на схоластику, никому не нужную.

     Математическую экономику, т.е. математику, выраженную в псевдоэкономических терминах, мы вслед за акад. Н.Н.Моисеевым квалифицируем как псевдонауку. В то же время необходимо подчеркнуть, что методы математического моделирования реальных экономических явлений и процессов, разумеется, полезны и необходимы, в частности, для успешной работы менеджеров, экономистов и инженеров, как на предприятиях, так и на государственной службе. Но нужны только те математические результаты, которые помогают экономисту в работе, в частности, методы теории принятия решений, эконометрики, прикладной математической статистики, экспертных оценок (в частности, сценарный метод).

     Нельзя не согласиться с тем очевидным утверждением, что некоторые теоретические работы, которые в настоящее время не удается связать с практикой, в будущем могут оказаться полезными для решения реальных задач. Лучший пример - история ядерной физики. Однако нельзя не указать на многочисленные монографии и сборники статей, в которых чисто математические рассуждения даны «под экономическим соусом».  

     Неправильное использование экономико-математических моделей. Экономико-математические модели иногда используются в качестве "дымовой завесы" для пропаганды сомнительных с научной точки зрения воззрений. В качестве примера рассмотрим некоторые западные курсы "экономикс".

     Они построены, естественно, на обобщении западной экономической жизни. Так, потребитель предполагается совершенно рациональным, точно знающим, что он хочет максимизировать (т.е. знающим свою функцию полезности), а также полностью игнорирующим всех остальных потребителей, действующим совершенно самостоятельно. Общество состоит из эгоистичных индивидуумов-атомов, отстаивающих только свои интересы, т.е. живущих по принципу "человек человеку - волк". Законы правового государства удерживают такое общество от самоуничтожения.

     Возможно, такая экономико-математическая модель годится для жителей западных стран, прежде всего США. Бесспорно совершенно, что она не годится для нас, для русских. Мы плохо знаем, что нам нужно, действуем под влиянием друзей, общественного мнения, моды, привыкли жить в коллективе, общине, семье, говорим о соборности, игнорируем экономические стимулы. Несмотря на снижение реальных доходов в несколько раз, пока нет бунтов. Хотя предприятия стоят, работники не уходят, а менеджеры (директора) их не увольняют. Сейчас зарплата профессора меньше зарплаты уборщицы в метро и в несколько раз меньше дохода продавца коммерческого киоска. Но, вопреки западным экономическим теориям, профессора не рвутся в продавцы. И рабочие выпускают продукцию, не получая зарплату. И потому Россия жива. Западные экономические теории не годятся не только для России. Они не подходят для исламских стран, для Индии и Китая, и т.д.

     В некоторых публикациях с помощью экономико-математических моделей сознательно вводят читателей в заблуждение. В качестве примера возьмем учебник Р. Лэйарда [14]. В нем "доказывается", что "инфляционный налог" равен дефициту бюджета. Отсюда рекомендация - для снижения инфляции необходимо ограничивать поступление новых денежных масс в оборот (например, не выдавать зарплату). Однако это утверждение выводится в предположении, что суммарный выпуск постоянен, чего нет у нас - объем производства падает. При этом Р. Лэйарда отнюдь не смущает, что в другой главе, говоря о "мультипликаторе Кейнса", он рекомендует увеличивать государственные расходы в период спада производства.

     Принципиально ошибочно рассмотрение Р. Лэйардом спирали "заработная плата - цены", основанное на математической ошибке (функция принимается за константу). Но вывод каков: чтобы снизить инфляцию, надо, якобы, увеличить безработицу!

     Перечень примеров ошибочных рассуждений можно продолжать сколь угодно долго. И не так уж важно, являются ли ошибки следствием некомпетентности авторов или же сознательно ориентированы на "промывку мозгов" в интересах мирового капитала. Важно то, что эти ошибки дискредитируют применение экономико-математических моделей. С подобными ошибками надо бороться. Но это не так легко - требуется глубоко вникать в тексты. Следовательно, необходима организация соответствующих научно-исследовательских проектов.

     Необходимо отметить, что название "Математическая экономика" носят и некоторые публикации, лишенные указанных выше недостатков, например, отличный учебник К.Ланкастера [51].  

 

 4.1.4. О методологии моделирования

     Задача – модель - метод – условия применимости. Применение моделирования при принятии решений предполагает последовательное осуществление трех этапов исследования. Первый - от исходной практической проблемы до теоретической чисто математической задачи. Второй – внутриматематическое изучение и решение этой задачи. Третий – переход от математических выводов обратно к практической проблеме. Выбирая свой путь в мире исследований по теории и практике принятия решений, приходится обдумывать и решать вопросы, относящиеся к методологии науки.

     В литературе вопросы методологии моделирования обсуждаются явно недостаточно. Зато наблюдается поток публикаций, в которых постановки решаемых задач иногда выглядят весьма искусственно. Цель настоящей подраздела - обосновать необходимость развития методологии моделирования статистических методов как самостоятельного научного направления, рассмотреть ряд проблем, относящихся к этому направлению.  

В области моделирования задач принятия решений, как, впрочем, и в иных областях применения математики, целесообразно выделять четверки проблем:

ЗАДАЧА – МОДЕЛЬ - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.

Обсудим каждую из только что выделенных составляющих.

     Задача, как правило, порождена потребностями той или иной прикладной области. Вполне понятно, что при этом происходит одна из возможных математических формализаций реальной ситуации. Например, при изучении предпочтений потребителей у экономистов - маркетологов возникает вопрос: различаются ли мнения двух групп потребителей. При математической формализации мнения потребителей в каждой группе обычно моделируются как независимые случайные выборки, т.е. как совокупности независимых одинаково распределенных случайных величин, а вопрос маркетологов переформулируется в рамках этой модели как вопрос о проверке той или иной статистической гипотезы однородности. Речь может идти об однородности характеристик, например, о проверке равенства математических ожиданий, или о полной (абсолютной однородности), т.е. о совпадении функций распределения, соответствующих двух совокупностям.

     Задача может быть порождена также обобщением потребностей ряда прикладных областей. Приведенный выше пример иллюстрирует эту ситуацию: к необходимости проверки гипотезы однородности приходят и медики при сравнении двух групп пациентов, и инженеры при сопоставлении результатов обработки деталей двумя способами, и т.д. Таким образом, одна и та же математическая модель может применяться для решения самых разных по своей прикладной сущности задач. 

     Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают статистикам.

     Метод, используемый в рамках определенной математической модели - это уже во многом, если не в основном, дело математиков. В эконометрических моделях речь идет, например, о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В первых двух случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.

Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов. Приведем примеры. Для специалистов по теории вероятностей и математической статистике наиболее хорошо известна история Центральной Предельной Теоремы теории вероятностей. Предельный нормальный закон был получен многими разными методами, из которых напомним теорему Муавра-Лапласа, метод моментов Чебышева, метод характеристических функций Ляпунова, завершающие эпопею методы, примененные Линдебергом и Феллером. В настоящее время для решения практически важных задач могут быть использованы современные информационные технологии на основе метода статистических испытаний и соответствующих датчиков псевдослучайных чисел. Они уже заметно потеснили асимптотические методы математической статистики. В рассмотренной выше проблеме однородности для проверки одной и той же гипотезы совпадения функций распределения могут быть применены самые разные методы – Смирнова, Лемана - Розенблатта, Вилкоксона и др. [4].

     Наконец, рассмотрим последний элемент четверки - условия применимости. Он - полностью внутриматематический. С точки зрения математика замена условия (кусочной) дифференцируемости некоторой функции на условие ее непрерывности может представляться существенным научным достижением, в то время как прикладник оценить это достижение не сможет. Для него, как и во времена Ньютона и Лейбница, непрерывные функции мало отличаются от (кусочно) дифференцируемых. Точнее, они одинаково хорошо (или одинаково плохо) могут быть использованы для описания реальной действительности.

Точно также он не сможет оценить внутриматематическое достижение, состоящее в переходе от конечности четвертого момента случайной величины к конечности дисперсии. Поскольку результаты реальных измерений получены с помощью некоторого прибора (средства измерения), шкала которого конечна, то прикладник априори уверен, что все результаты измерений заведомо лежат на некотором отрезке (т.е. финитны). Он с некоторым недоумением наблюдает за математиком, который рассуждает о конечности тех или иных моментов - для прикладника они заведомо конечны.

Математики и прикладники. Таким образом, в настоящее время наблюдается значительное расхождение интересов "типового" математика и "типового" прикладника. Конечно, мы рассуждаем, строя гипотетические модели восприятия и поведения того и другого. Опишем эти модели более подробно.

Прикладник заинтересован в научно обоснованном решении стоящих перед ним реальных задач. При этом при формализации задач он готов принять достаточно сильные математические предположения. Например, с точки зрения прикладника случайные величины могут принимать конечное множество значений, или быть финитными, или иметь нужное математику число моментов, и т.д. Переход от дискретности к непрерывности для прикладника оправдан только тогда, когда этот переход облегчает выкладки и расчеты, как в математическом анализе переход от сумм к интегралам облегчает рассуждения и вычисления. Если же при переходе к непрерывности возникают сложности типа необходимости доказательства измеримости тех или иных величин относительно тех или иных сигма-алгебр, то прикладник готов вернуться к постановке задачи с конечным вероятностным пространством. Здесь уместно напомнить, что один из выдающихся вероятностников ХХ в. В. Феллер выпустил свой учебник по теории вероятностей в двух книгах, посвятив первую дискретным вероятностным пространствам, а вторую - непрерывным.

Другой пример - задачи оптимизации. Если оптимизация проводится по конечному множеству, то оптимум всегда достигается (хотя может быть не единственным). Если же множество параметров бесконечно, то задача оптимизации может и не иметь решения. Поэтому у прикладника есть стимул ограничиться математическими моделями с конечным множеством параметров. Напомним в связи с этим, что основные задачи прикладной статистики допускают оптимизационную постановку, а статистика объектов нечисловой природы в целом построена на решении оптимизационных задач (а не на суммировании тех или иных выражений, поскольку в пространствах объектов нечисловой природы нет операции сложения).

Модель поведения типового математика совершенно иная. Он, как правило, не обдумывает реальные задачи, поскольку не вникает в конкретные прикладные области. (Если же вникает, то является уже не только математиком, но и прикладником, и его поведение промоделировано в предыдущих абзацах.) Математик берет те задачи, которые уже ранее рассматривались, и старается получить для них математически интересные результаты. Зачастую это означает борьбу за ослабление математических условий, при которых были получены предыдущие результаты. При этом математика абсолютно не волнует, имеют ли какое-либо реальное содержание доказанные им теоремы, могут ли они принести какую-либо пользу прикладнику. Его интересует реакция математической общественности, а не реакция прикладников.

Сколько реально используется чисел? Для демонстрации разрыва между математиками и прикладниками обратим внимание на два парадокса.

Все реальные результаты наблюдений записываются рациональными числами (обычно десятичными числами с небольшим - от 2 до 5 - числом значащих цифр). Как известно, в математике множество рациональных чисел счетно, а потому вероятность попадания значения непрерывной случайной величины в него равно 0. Следовательно, все рассуждения, связанные с моделированием непрерывными случайными величинами реальных результатов наблюдений - это рассуждения о том, что происходит внутри множества меры 0. Первый парадокс состоит в том, что множествами меры 0 в теории вероятностей принято пренебрегать. Другими словами, в точки зрения теории вероятностей всеми реальными данными можно пренебречь, поскольку они входят в одно фиксированное множество меры 0.

Глубже проанализируем ситуацию. Сколько всего чисел используется для записи реальных результатов наблюдений? Речь идет о типовых результатах наблюдений, измерений, испытаний, опытов, анализов. Они используются в технических, естественнонаучных, экономических, социологических, медицинских и иных исследованиях. Анализ практики показывает, что эти числа имеют вид (a,bcde)10k. Здесь a принимает значения от 1 до 9, а стоящие после запятой b, c, d, e - от 0 до 9. В то же время показатель степени k меняется от (-100) до +100. Ясно, что общее количество возможных чисел равно 9х104х201=18090000, т.е. меньше 20 миллионов.

Итак, второй парадокс, усиливающий первый, состоит в том, что для описания реальных результатов наблюдений вполне достаточно 20 миллионов отдельных символов. Бесконечность натурального ряда и континуум числовой прямой - это математические абстракции, надстроенные над дискретной и состоящей из конечного числа элементов реальностью. (При изменении числа значащих цифр принципиальный вывод не меняется.) Таким образом, реальные данные лежат не только во множестве меры 0, но и в конечном множестве, причем число элементов в этом множестве вполне обозримо.

Практические следствия методологии моделирования. Из сказанного вытекают некоторые вполне определенные выводы, в том числе касающиеся преподавания и научных исследований.

Например, преподавание теории вероятностей может быть сосредоточено на случае конечного вероятностного пространства. Бесконечные вероятностные пространства могут при этом рассматриваться как удобные математические схемы. Их роль – давать возможность более легко и быстро получать полезные утверждения для конечных вероятностных пространств. Из сказанного вытекает, в частности, что различные параметрические семейства распределений (нормальные, логарифмически нормальные, экспоненциальные, Коши, Вейбулла-Гнеденко, гамма-распределений) приобретают статус не более чем удобных приближений для распределений на конечных вероятностных пространствах. При таком подходе теряет свою парадоксальность тот эмпирически не раз проверенный факт, что распределение погрешностей измерений, как правило, не является гауссовым [4].

В качестве другого примера рассмотрим методы оценивания параметров. По традиции много внимания в учебных курсах уделяется оценкам максимального правдоподобия (ОМП). Однако столь же хорошие асимптотические свойства имеют т.н. одношаговые оценки, гораздо более простые с вычислительной точки зрения [52]. Целесообразно их включить в учебные курсы, а ОМП исключить.

Целесообразно уделять внимание (репрезентативной) теории измерений, в частности, концепции шкал измерения. Необходимо знакомство с определениями и основными свойствами шкал наименований, порядковой, интервалов, отношений, разностей, абсолютной. Установлено, какими алгоритмами статистического анализа данных можно пользоваться в той или иной шкале, в частности, для усреднения результатов наблюдений. Так, для данных, измеренных в порядковой шкале, некорректно вычислять среднее арифметическое. В качестве средних величин для таких данных можно использовать порядковые статистики, в частности, медиану.

Статистические методы исследования часто опираются на использование современных информационных технологий. В частности, распределение статистики можно находить методами асимптотической математической статистики, а можно и путем статистического моделирования (метод Монте-Карло, он же - метод статистических испытаний).

Точки роста. Важно прогнозировать развитие методов моделирования, отличать перспективные направления от тупиковых. Рассмотрим эту проблему на примере прикладной статистики. В работе [53] выделено пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Кратко обсудим эти актуальные направления.

Непараметрика, или непараметрическая статистика, позволяет делать статистические выводы, оценивать характеристики распределения, проверять статистические гипотезы без слабо обоснованных предположений о том, что функция распределения элементов выборки входит в то или иное параметрическое семейство. Например, уже отмечалось, что широко распространена вера в то, что статистические данные часто подчиняются нормальному распределению. Математики думают, что это - экспериментальный факт, установленный в прикладных исследованиях. Прикладники уверены, что математики доказали нормальность результатов наблюдений. Между тем анализ конкретных результатов наблюдений, в частности, погрешностей измерений, приводит всегда к одному и тому же выводу - в подавляющем большинстве случаев реальные распределения существенно отличаются от нормальных. Некритическое использование гипотезы нормальности часто приводит к значительным ошибкам, например, при отбраковке резко выделяющихся результатов наблюдений (выбросов), при статистическом контроле качества и в других случаях. Поэтому целесообразно использовать непараметрические методы, в которых на функции распределения результатов наблюдений наложены лишь весьма слабые требования. Обычно предполагается лишь их непрерывность. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг задач, что ранее решался параметрическими методами.

Основная идея работ по робастности, или устойчивости, состоит в том, что выводы, полученные на основе математических методов исследования, должны мало меняться при небольших изменениях исходных данных и отклонениях от предпосылок модели. Здесь есть два круга задач. Один - это изучение устойчивости распространенных алгоритмов анализа данных. Второй - поиск робастных алгоритмов для решения тех или иных задач. Отметим, что сам по себе термин "робастность" не имеет точно определенного смысла. Всегда необходимо указывать конкретную вероятностно-статистическую модель. При этом модель "засорения" Тьюки-Хубера-Хампеля обычно не является практически полезной. Дело в том, что она ориентирована на "утяжеление хвостов", а в реальных ситуациях "хвосты" обрезаются априорными ограничениями на результаты наблюдений, связанными, например, с используемыми средствами измерения.

Бутстреп - направление непараметрической статистики, опирающееся на интенсивное использование информационных технологий. Основная идея состоит в "размножении выборок", т.е. в получении набора из многих выборок, напоминающих выборку, полученную в эксперименте. По такому набору можно оценить свойства различных статистических процедур, не прибегая к излишне обременительным параметрическим вероятностно-статистическим моделям. Простейший способ "размножения выборки" состоит в исключении из нее одного результата наблюдения. Исключаем первое наблюдение, получаем выборку, похожую на исходную выборку, но с объемом, уменьшенным на 1. Затем возвращаем исключенный результат первого наблюдения, но исключаем второе наблюдение. Получаем вторую выборку, похожую на исходную. Затем возвращаем результат второго наблюдения, и т.д. Есть и иные способы "размножения выборок". Например, можно по исходной выборке построить ту или иную оценку функции распределения, а затем методом статистических испытаний смоделировать ряд выборок из элементов, функция распределения которых совпадает с этой оценкой.

Интервальная статистика - это анализ интервальных статистических данных. Вполне очевидно, что все средства измерения имеют погрешности. Однако до недавнего времени это очевидное обстоятельство никак не учитывалось в статистических процедурах. В результате возникла абсурдная концепция состоятельности как необходимого свойства статистических оценок параметров и характеристик. Только недавно начала развиваться теория интервальной статистики, избавленная от указанной абсурдной концепции. В ней предполагается, что исходные данные - это не числа, а интервалы. Интервальную статистику можно рассматривать как часть интервальной математики. Выводы в ней часто принципиально отличны от классических.

Нечисловая статистика. Перейдем к статистике объектов нечисловой природы (она же - статистика нечисловых данных, или нечисловая статистика). Сначала напомним, что исходный объект в прикладной статистике - это выборка, т.е. совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки - это числа. В многомерном статистическом анализе - вектора. А в нечисловой статистике элементы выборки - это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.

Примерами объектов нечисловой природы являются:

- значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);

- упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);

- классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);

- толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;

- результаты парных сравнений или контроля качества продукции по альтернативному признаку ("годен" - "брак"), т.е. последовательности из 0 и 1;

- множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;

- слова, предложения, тексты;

- вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации (т.н. форма № 1-наука) или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть - количественный;

- ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.

Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств. А именно, если характеристическая функция нечеткого множества равна 1 на некотором интервале и равна 0 вне этого интервала, то задание нечеткого множества эквивалентно заданию интервала. Напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств. Цикл соответствующих теорем приведен в работах [4,7].

С 1970-х годов в основном на основе запросов теории экспертных оценок (а также технических исследований, экономики, социологии и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены основные связи между конкретными видами таких объектов, разработаны для них базовые вероятностные модели. Следующий этап (1980-е годы) - выделение статистики объектов нечисловой природы в качестве самостоятельной дисциплины, ядром которого являются методы статистического анализа данных произвольной природы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики. К 1990-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. И в 1990-е годы наступило время перейти от математико-статистических исследований к применению полученных результатов на практике. Следует отметить, что в статистике объектов нечисловой природы одна и та же математическая схема может с успехом применяться во многих областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

Принципиальная новизна нечисловой статистики. Рассмотрим основные идеи статистики объектов нечисловой природы. В чем ее принципиальная новизна? Для классической математической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.

Кратко рассмотрим несколько идей, развиваемых в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольного вида. Они нацелены на решение классических задач описания данных, оценивания, проверки гипотез - но для неклассических данных, а потому неклассическими методами. 

Первой обсудим проблему определения средних величин. В рамках теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения. В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Теоретическое среднее определяется как решение задачи минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственными элементами рассматриваемого пространства, а являться некоторыми множествами таких элементов, которые могут оказаться и пустыми. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость (в специально определенном смысле) эмпирических средних к теоретическим.

Оказалось, что методы доказательства законов больших чисел допускают существенно более широкую область применения, чем та, для которой они были разработаны. А именно, удалось изучить асимптотику решений экстремальных статистических задач, к которым, как известно, сводится большинство постановок прикладной статистики. В частности, кроме законов больших чисел установлена и состоятельность оценок минимального контраста, в том числе оценок максимального правдоподобия и робастных оценок. К настоящему времени подобные оценки изучены также и в интервальной статистике.

В статистике в пространствах произвольной природы большую роль играют непараметрические оценки плотности, используемые, в частности, в различных алгоритмах регрессионного, дискриминантного, кластерного анализов. В нечисловой статистике предложен и изучен ряд типов непараметрических оценок плотности в пространствах произвольной природы, в том числе в дискретных пространствах. В частности, доказана их состоятельность, изучена скорость сходимости и установлен примечательный факт совпадения наилучшей скорости сходимости в произвольном пространстве с той, которая имеет быть в классической теории для числовых случайных величин.

Дискриминантный, кластерный, регрессионный анализы в пространствах произвольной природы основаны либо на параметрической теории - и тогда применяется подход, связанный с асимптотикой решения экстремальных статистических задач - либо на непараметрической теории - и тогда используются алгоритмы на основе непараметрических оценок плотности.

Для проверки гипотез могут быть использованы статистики интегрального типа, в частности, типа омега-квадрат. Любопытно, что предельная теория таких статистик, построенная первоначально в классической постановке, приобрела естественный (завершенный, изящный) вид именно для пространств произвольного вида. Это объясняется тем, что при этом удалось провести рассуждения, опираясь на базовые математические соотношения, а не на те частные (с общей точки зрения), что были связаны с конечномерным пространством.

Представляют практический интерес результаты, связанные с конкретными областями статистики объектов нечисловой природы В частности, со статистикой нечетких множеств и со статистикой случайных множеств (напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств), с непараметрической теорией парных сравнений и бернуллиевских векторов (люсианов), с аксиоматическим введением метрик в конкретных пространствах объектов нечисловой природы, и с рядом других конкретных постановок. 

Для анализа нечисловых, в частности, экспертных данных весьма важны методы классификации. С другой стороны, наиболее естественно ставить и решать задачи классификации, основанные на использовании расстояний или показателей различия, в рамках статистики объектов нечисловой природы. Это касается как распознавания образов с учителем (другими словами, дискриминантного анализа), так и распознавания образов без учителя (т.е. кластерного анализа).

Методологический анализ - первый этап моделирования задач принятия решений, да и вообще любого исследования. Он определяет исходные постановки для теоретической проработки, а потому во многом и успех всего исследования.

Подчеркнем, что анализ динамики развития методов моделирования позволяет выделить наиболее перспективные методы. В частности, при вероятностно-статистическом моделировании наиболее перспективными оказались методы нечисловой статистики.

Литература

1. Неуймин Я.Г. Модели в науке и технике. История, теория, практика. - Л.: Наука, 1984. - 190 с.

2. Жданова Г.А. Эффект лояльности как базисный элемент работы с покупателями. - Предприятия России в транзитивной экономике. Материалы международной научно-практической конференции (Ярославль, 29-30 октября 2002 г.). Часть I. - Ярославль: Концерн «Подати», 2002.

3. Моисеев Н.Н. Математические задачи системного анализа. - М.: Наука, 1981. - 488 с.

4. Орлов А.И. Эконометрика. – М.: Экзамен,2002. – 576 с.

5. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975. - 500 с.

6. Математическая экономика на персональном компьютере. Пер. с яп./ М. Кубонива, М. Табата, С.Табата, Ю. Хасэбэ; Под ред. М. Кубонива. - М.: Финансы и статистика, 1991. - 304 с.

7. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. -296 с.

8. Бизнес-процесс реинжиниринг и проектирование информационных систем. Материалы семинара. - М.:МГУЭСИ - РосНИИ ИТСАП, 1996. - 100 с.

9. Население России 2000. Восьмой ежегодный демографический доклад. / Под ред. Вишневского А.Г. – М.: Книжный дом «Университет», 2000. – 176 с.

10. Экология / Под ред. С.А.Боголюбова. – М.: Знание, 1999.

11. Гундаров И. А. Пробуждение: пути преодоления демографической катастрофы в России. – М.: Центр творчества «Беловодье», 2001. – 352 с.

12. Предположительная численность населения Российской Федерации до 2016 года (Статистический бюллетень). – Москва: Госкомитет России по статистике. 2000. – 149 с.

13. Гнеденко Б.В. Математика и контроль качества продукции.- М.: Знание, 1978. – 64 с.

14. Лэйард Р. Макроэкономика. - М.: Джон Уайли энд Санз, 1994.

15. Моисеев Н.Н. Математические модели экономической науки. - М.: Знание, 1973.

16. Лотов А.В. Введение в экономико-математическое моделирование. - М.: Наука, 1984.

17. Бусленко Н.П. Моделирование сложных систем. - М.: Наука, 1978.

18. Кемени Дж., Снелл Дж. Кибернетическое моделирование: Некоторые приложения. - М.: Советское радио, 1972.

19. Моисеев Н.Н. Математика ставит эксперимент. - М.: Наука, 1979.

20. Нейман Дж.фон, Моргенштейн О. Теория игр и экономическое поведение. - М.: Наука, 1970.

21. Рыжиков Ю.И. Управление запасами. - М.: Наука, 1969.

22. Багриновский К.А., Бусыгин В.П. Математика плановых решений. - М.: Наука, 1980. 

23. Анализ на проблемных сетях / Под ред. С.А. Петровского. - М.: Институт мировой экономики и международных отношений АН СССР, 1980.

24. Канторович Л.В. Математические модели организации и планирования производства. - Л.: ЛГУ, 1939.

25. Канторович Л.В. Экономический расчет наилучшего использования ресурсов. - М.: Наука, 1959.

26. Юдин Д.Б., Юдин А.Д. Экстремальные модели в экономике, - М.: Экономика, 1979.

27. Гаврилец Ю.Н. Целевые функции социально-экономического планирования. - М.: Экономика, 1983.

28. Подиновский В.В., Ногин В.Д. Парето - оптимальные решения многокритериальных задач. - М.: Наука, 1982.

29. Фишберн П. Теория полезности для принятия решений. - М.: Наука, 1978.

30. Винн Р., Холден К. Введение в прикладной эконометрический анализ. - М.: Финансы и статистика, 1981.

31. Гейл Д. Теория линейных экономических моделей. - М.: ИЛ, 1963.

32. Джонстон Дж. Эконометрические методы.- М.: Финансы и статистика, 1980.

33. Драймз Ф. Распределенные лаги: проблема выбора и оценивания моделей. - М.: Финансы и статистика, 1982.

34. Зельнер А. Байесовские методы в эконометрии. - М.: Финансы и статистика, 1980.

35. Маленво Э. Статистические методы эконометрии. - М.: Статистика, 1975 (вып.1), 1976 (вып.2).

36. Пуарье Д. Эконометрия структурных изменений. - М.: Финансы и статистика, 1981.

37. Тейл Г. Экономические прогнозы и принятие решений. - М.: Статистика, 1971.

38. Фишер Ф. Проблема идентификации в эконометрии. - М.: Статистика, 1978.

39. Аллен Р. Экономические индексы. - М.: Финансы и статистика, 1980.

40. Анализ нечисловой информации / Тюрин Ю.Н., Литвак Б.Г., Орлов А.И., Сатаров Г.А., Шмерлинг Д.А. - М.: Научный Совет АН СССР по комплексной проблеме "Кибернетика", 1981.

41. Орлов А.И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980.

42. Анализ нечисловой информации в социологических исследованиях / Под редакцией В.Г. Андреенкова, А.И.Орлова, Ю.Н.Толстовой. - М.: Наука, 1985. 

43. Психологические измерения. - М.: Мир, 1967.

44. Пфанцагль И. Теория измерений. - М.:Мир, 1976.

45. Блекуэлл Д., Гиршик М. Теория игр и статистических решений. - М.: ИЛ, 1958.

46. Льюс Р.Д., Райфа Х. Игры и решения. - М.: ИЛ, 1975.

47. Ченцов Н.Н. Статистические решающие правила и оптимальные выводы. - М.: Наука, 1972.

48. Вощинин А.П. Метод оптимизации объектов по интервальным моделям целевой функции. - М.: МЭИ, 1987.

49. Вощинин А.П., Акматбеков Р.А. Оптимизация по регрессионным моделям и планирование эксперимента. - Бишкек: Изд-во "Илим", 1992.

50. Саати Т.Л. Математические модели конфликтных ситуаций. - М.: Советское радио, 1977.

51. Ланкастер К. Математическая экономика. - М.: Советское радио, 1972.

52. Орлов А.И. О нецелесообразности использования итеративных процедур нахождения оценок максимального правдоподобия // Заводская лаборатория. 1986. Т.52. No.5. С.67-69.

53. Орлов А.И. Современная прикладная статистика // Заводская лаборатория. 1998. Т.64. № 3. С.52-60.

 

Контрольные вопросы

 

1. В чем сходство и различие словесных и математических моделей?

2. Согласны ли Вы с моделью лояльности, описанной в подразделе 4.1.1.?

3. Основные виды переменных в математических моделях принятия регений.

5. Почему среднюю ожидаемую продолжительность предстоящей жизни считают наиболее адекватной характеристикой здоровья и уровня жизни населения?

6. Какие выводы о динамике численности населения России в ближайшие 50 лет можно сделать на основе рассмотренных в подразделе 4.1.2 демографических моделей?

7. Какие виды математических моделей принятия решений обычно выделяют?

8. Приведите примеры практической пользы от применения тех или иных подходов методологии математического моделирования. 

 

Темы докладов и рефератов

 

1. Классификация математических моделей принятия решений.

2. Соотношение словесных и математических моделей. 

3. Средние величины для основных характеристик (смертности, рождаемости, продолжительности жизни) в демографических моделях.

4. Математическое моделирование и «математическая экономика».

5. «Точки роста» в математическом обеспечении теории принятия решений.

6. Роль нечисловых переменных в современных моделях принятия решений.


 


Дата добавления: 2018-10-26; просмотров: 341; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!