Средняя квадратическая погрешность функции
Измеренных величин.
В практике геодезических измерений определяемые величины обычно являются функциями других, непосредственно измеряемых величин. Рассмотрим функцию u независимых переменных x, y, z , …
u = f (x , y , z …). (5.5)
Продифференцируем функцию (5.5) по всем переменным и заменим дифференциалы du, dx, dy, dz, …. погрешностями Du, Dx,Dy,Dz, ….
Получили выражение случайной погрешности Du в зависимости от случайной комбинации погрешностей Dx,Dy,Dz, …. Положим, что имеем n таких комбинаций, которым соответствует n выражений:
(i = 1, 2, …, n)
Возведем полученные выражения в квадрат, сложим и разделим на n:
,
где квадратными скобками обозначены суммы.
Устремим число комбинаций в бесконечность (n ® ¥) и, воспользовавшись выражениями (5.4) и (5.3), получим: , , , , . И окончательно
(5.6)
Итак, квадрат средней квадратической погрешности функции общего вида равен сумме квадратов произведений частных производных по каждой переменной, умноженных на их средние квадратические погрешности.
Частные случаи.
1. Функция u является суммой переменных x , y, z:
u = x + y + z .
В этом случае =1, =1, =1. Следовательно
= + + .
2. Функция u является разностью переменных x и y:
u = x - y.
В этом случае =1, =-1. Следовательно
= + .
3. Функция u имеет вид:
u = k × x,
где k – постоянный множитель. Теперь = k, поэтому = k2× и
mu = k × mx.
|
|
4. Функция u является линейной функцией от x, y, z, …:
u = k1 x + k2 y + k3 z …,
где k i постоянные множители. Теперь частные производные равны =k1, = k2, = k3. Поэтому
.
Рассмотрим примеры.
Пример 1. Определить среднюю квадратическую погрешность превышения, вычисленного по горизонтальному расстоянию d=124,16 м и углу наклона n=2°16´, если md = 0,06 м, а mn = 1´.
Превышение вычисляют по формуле
h = d tgν.
Продифференцируем формулу по переменным d и n:
, .
Используя формулу общего вида (5.6) получим
Подставляя исходные данные, найдем
где 3438¢ - число минут в радиане. И окончательно m h=0,036 .м.
Пример 2. При геометрическом нивелировании (см. раздел 9.2) превышение вычисляют как разность отчетов по рейкам
h = a - b.
Отчеты берут с точностью ma = mb = 2 мм. Находим среднюю квадратическую погрешность превышения
= 2,8 мм
Пример 3. Выведем формулу допустимой угловой невязки замкнутого теодолитного хода (см. раздел 9.4). Невязку вычисляют по формуле
fb = b1 + b2 + ¼+ bn - 180°(n - 2),
где bi – измеренные углы (i = 1, 2, ¼, n) и n – их число.
Невязка - результат погрешностей в углах bi. Поэтому средняя квадратическая погрешность невязки равна
mf = = ,
где m1 = m2 =¼ = mn = m – средняя квадратическая погрешность измерения угла. Примем ее равной m = 0,5¢.
|
|
Допуском угловой невязки (fb)доп служит предельная погрешность (fb)пред=2mf. Получаем формулу
(fb)доп = 1¢ .
Математическая обработка результатов прямых
Равноточных измерений
Арифметическая средина результатов равноточных измерений. Пусть имеем результаты многократных равноточных измерений одной величины: l1, l2, …, ln. Рассмотрим их среднее арифметическое
. (5.7)
Из (5.1) следует l i = Х + Δi (i = 1, 2, … n). Поэтому напишем
= X - .
Согласно (5.2) с увеличением числа измерений сумма случайных погрешностей, деленная на их число, стремится к нулю, и, следовательно, среднее арифметическое L стремится к истинному значению Х. Поэтому значение определяемой величины принимают равным среднему арифметическому.
Средняя квадратическая погрешность арифметической средины. Пусть точность результатов измерений l1, l2, …, ln характеризуется средними квадратическими погрешностями
m1 = m2 = ¼ = mn = m
и требуется найти среднюю квадратическую погрешность M арифметической средины.
Представим формулу (5.7) в следующем виде:
L = .
Среднюю квадратическую погрешность арифметической средины найдем как погрешность функции измеренных величин по формуле (5.6)
|
|
или
(5.8)
Формула (5.8) показывает, что погрешность арифметической средины с ростом числа измерений убывает пропорционально квадратному корню из этого числа. Так, чтобы погрешность среднего арифметического уменьшить в 2 раза, число измерений надо увеличить в 4 раза.
Обработка результатов равноточных измерений. Математическая обработка ряда результатов l1, l2, …, ln прямых равноточных измерений одной величины выполняется в следующей последовательности:
1. Вычисляют среднее арифметическое L
.
2. Вычисляют поправки к vi результатам измерений
(i = 1, 2, …, n)
Контролем правильности вычислений служит сумма поправок, которая должна быть близка к нулю.
3. Вычисляют среднюю квадратическую погрешность одного измерения по формуле Бесселя:
.
Значение m вычисляют с двумя-тремя значащими цифрами.
4. Вычисляют среднюю квадратическую погрешность среднего арифметического
.
Дата добавления: 2018-10-27; просмотров: 500; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!