Мим или МЕМ Читать отсюда обязательно. 15 страница



 

В случае такого далекого родства, как четвероюродные братья или сестры [2x(1/2)^8 = 1/128], вероятность наличия у них общих генов приближается к вероятности того, что некий ген, имеющийся у A, будет обнаружен у индивидуума, выбранного наудачу из популяции. В том, что касается гена альтруизма, четвероюродный брат мало отличается от какого-нибудь старины Тома, Дика или Гарри. Троюродный брат (коэффициент родства = 1/32) всего лишь чуть ближе, а двоюродный — еще несколько ближе (1/8). Родные братья и сестры и родители и дети очень близки (1/2), а однояйцовые близнецы (коэффициент родства = 1) совершенно идентичны. Тетки и дядья, племянники и племянницы, деды или бабки и внуки, а также единоутробные и единокровные братья и сестры занимают промежуточное положение (коэффициент родства = 1/4).

 

Теперь мы имеем возможность рассуждать о генах кин-альтруизма гораздо более конкретно. Ген, определяющий самоубийственное спасение пятерых двоюродных братьев и сестер, не станет более многочисленным в популяции, но численность гена, определяющего спасение пятерых родных братьев и сестер ценой собственной гибели, повысится. Минимальное условие, необходимое гену самоубийственного альтруизма для успеха, состоит в том, чтобы спасти больше двух своих сибсов (или детей, или родителей), либо больше двух полусибсов (или дядьев, теток, племянников, племянниц, дедов, бабок, внуков), либо более восьми двоюродных сибсов и т. д. Такой ген в среднем продолжает жить в телах достаточного числа индивидуумов, спасенных альтруистом, чтобы компенсировать гибель его самого.

 

Если бы некий индивидуум был уверен, что данное лицо является его идентичным близнецом, он заботился бы о его благополучии точно так же, как о своем собственном. Любой ген близнецового альтруизма имеется у обоих близнецов, поэтому если один из них героически гибнет, спасая другого, ген продолжает жить. Девятипоясные броненосцы обычно рождают идентичную четверню. Насколько мне известно, ни о каких актах героического самопожертвования, совершаемых молодыми броненосцами, не сообщалось; однако высказывалось мнение, что у них определенно следует ожидать каких-то сильных проявлений альтруизма. Если кто-нибудь собирается ехать в Южную Америку, то стоило бы заняться этим [6.3]: #note6.3.

 

Теперь нам понятно, что забота о потомстве — всего лишь частный случай кин-альтруизма. С генетической точки зрения взрослый индивидуум должен уделять совершенно столько же заботы и внимания своему осиротевшему брату-младенцу, как и собственным детям. Коэффициент его родства с обоими младенцами совершенно одинаков, 1/2. С точки зрения генного отбора ген, детерминирующий альтруистичное поведение старшей сестры, должен иметь столько же шансов распространиться в популяции, как и ген родительского альтруизма. На самом деле это очень сильное упрощение (по многим причинам, которые мы рассмотрим позднее), а братская или сестринская забота отнюдь не столь обычна в природе, как родительская. Здесь, однако, я хочу показать, что с генетической точки зрения нет ничего особенного во взаимоотношениях родители/дети по сравнению со взаимоотношениями братья/сестры. Тот факт, что родители действительно наделяют своих детей генами, а сестры не наделяют ими друг друга, не имеет значения, поскольку обе сестры получают идентичные реплики одних и тех же генов от одних и тех же родителей.

 

Некоторые авторы используют термин кин-отбор для того, чтобы отличать этот тип естественного отбора от группового отбора (дифференциальное выживание групп) и индивидуального отбора (дифференциальное выживание индивидуумов). Кин-отбор ответствен за внутрисемейный альтруизм; чем теснее родство, тем сильнее отбор. В термине кин-отбор нет ничего плохого, но, к сожалению, от него, возможно, придется отказаться ввиду того, что в последнее время его совершенно неправильно употребляют и в будущем это может привести биологов в полное замешательство. Э. Уилсон (E. O. Wilson) в своей, в остальном прекрасной, книге «Социобиология. Новый синтез» определяет кин-отбор как особый случай группового отбора. В книге есть схема, которая ясно показывает, что с точки зрения Уилсона кин-отбор занимает промежуточное положение между «индивидуальным отбором» и «групповым отбором» в общепринятом смысле, т. е. в том смысле, в каком я их употреблял в гл. 1. Между тем групповой отбор — даже по определению самого Уилсона — означает дифференциальное выживание групп индивидуумов. Конечно, в некотором смысле семья — это особый тип группы. Однако вся суть рассуждений Гамильтона сводится к тому, что различие между семьей и несемьей не есть нечто определенное и нерушимое, а зависит от математической вероятности. Теория Гамильтона отнюдь не утверждает, что животные должны относиться альтруистически ко всем «членам семьи» и эгоистически — ко всем другим. Между семьей и несемьей нельзя провести строгую границу. Нам не надо решать, следует ли, например, относить к числу членов семьи троюродных братьев и сестер или считать их чужими: мы просто ожидаем, что вероятность проявления альтруизма в отношении троюродных братьев или сестер должна составлять 1/16 вероятности альтруизма в отношении потомков или сибсов. Кин-отбор никак нельзя считать особым случаем группового отбора [6.4]: #note6.4. Это особое следствие генного отбора.

 

Уилсоновское определение кин-отбора содержит и другой, еще более серьезный недостаток. Оно преднамеренно исключает потомков: они не считаются родственниками![6.5]: #note6.5 Разумеется, Уилсон прекрасно знает, что потомки связаны родством со своими родителями, но предпочитает не взывать к теории кин-отбора для того, чтобы объяснить альтруизм, проявляемый родителями в заботе о собственных потомках. Он, конечно, вправе определять термин так, как считает нужным, но это определение создает сильную путаницу, и я надеюсь, что в последующих изданиях своей действительно очень ценной книги он его изменит. С генетической точки зрения родительская забота о потомстве и братско-сестринский альтруизм возникли в процессе эволюции по совершенно одной и той же причине: в обоих случаях велика вероятность наличия в теле опекаемого индивидуума гена альтруизма.

 

Я прошу прощения у читателя-неспециалиста за эту небольшую обличительную речь и спешу вернуться к нашей главной теме. До сих пор я слишком сильно упрощал изложение, но настало время ввести некоторые оценки. Я говорил просто о генах, детерминирующих самоубийство ради спасения жизни определенного числа родственных индивидуумов, коэффициент родства с которыми точно известен. Совершенно очевидно, что в реальной действительности животные неспособны точно сосчитать, сколько родственных индивидуумов они спасают, или провести в уме гамильтоновские расчеты, даже если бы они могли каким-то образом наверняка знать, что данные индивидуумы в самом деле их родные, двоюродные и т. п. братья и сестры. В реальной жизни верное самоубийство и несомненное «спасение» жизни должны быть заменены статистическим риском гибели как для самого себя, так и для других. Может статься, что имеет смысл спасать даже четвероюродного брата, если риск для самого себя при этом очень невелик. Кроме того, как вы, так и родственник, которого вы собираетесь спасать, в любом случае в один прекрасный день несомненно умрете. Для каждого индивидуума существует некая «ожидаемая продолжительность жизни», которую страховая компания может вычислить с некоторой степенью точности. Спасение жизни родственника, который скоро умрет от старости, окажет меньшее влияние на будущий генофонд, чем спасение жизни столь же близкого родственника, у которого большая часть жизни еще впереди.

 

Наши изящные симметричные вычисления коэффициентов родства придется модифицировать с учетом путаных и сложных взвешиваний, производимых статистиками страховых компаний. Деды и бабки, с одной стороны, и внуки — с другой, в генетическом смысле имеют равные основания проявлять друг к другу альтруизм, поскольку их гены на 1/4 одинаковы. Но поскольку ожидаемая продолжительность жизни внуков больше, гены альтруизма дедов и бабок по отношению к внукам имеют более высокую селективную ценность, чем гены альтруизма внуков по отношению к дедам и бабкам. Вполне возможно, что чистый выигрыш от помощи, оказанной молодому дальнему родственнику, будет выше чистого выигрыша от помощи пожилому близкому родственнику. (Кстати сказать, ожидаемая продолжительность жизни у дедов и бабок вовсе необязательно должна быть меньше, чем у внуков. У видов с высокой смертностью в раннем возрасте возможно обратное соотношение.)

 

Продолжая «страховочную» аналогию, можно рассматривать индивидуумов как лиц, страхующих жизнь. Данный индивидуум может рискнуть известной частью своего состояния на страховку жизни другого человека. При этом он принимает во внимание коэффициент своего родства с этим человеком, а также его «надежность» в смысле его ожидаемой продолжительности жизни по сравнению со своей собственной. Строго говоря, следовало бы заменить «ожидаемую продолжительность жизни» на «ожидаемую репродуктивность» или еще строже — на «общую способность благоприятствовать собственным генам в течение будущей жизни». В таком случае для эволюции альтруистичного поведения суммарный риск для альтруиста должен быть меньше, чем суммарный выигрыш для реципиента, умноженный на коэффициент родства. Риск и выигрыш следует вычислять упомянутым выше сложным способом, применяемым страховыми обществами.

 

Но можно ли ожидать, что бедная машина выживания будет способна произвести эти сложные вычисления, да еще в спешке [6.6]: #note6.6! Даже великий матбиолог Дж. Холдейн (в опубликованной в 1955 г. работе, где он предвосхитил концепцию Гамильтона, постулировав распространение гена, детерминирующего спасение тонущих родственников) заметил: «…в тех двух случаях, когда я вытаскивал из воды с минимальнейшим риском для себя людей, которые могли бы утонуть, у меня не было никакого времени на подобные вычисления». К счастью, как это хорошо знал Холдейн, предполагать, что машины выживания сознательно производят в уме вычисления, нет необходимости. Совершенно так же, как мы применяем логарифмическую линейку, не сознавая, что мы на самом деле используем логарифмы, животное может быть запрограммировано таким образом, что оно ведет себя, как если бы оно производило сложные вычисления.

 

Вообразить это не столь уж сложно, как может показаться. Когда человек подбрасывает мяч высоко в воздух и вновь ловит его, он ведет себя так, как если бы он решал систему дифференциальных уравнений, определяющих траекторию мяча. Он может не знать, что такое дифференциальное уравнение, и не стремиться узнать, но это никак не отражается на его искусстве играть с мячом. На каком-то подсознательном уровне происходит что-то, равноценное математическим вычислениям. Точно так же, когда человек принимает трудное решение, предварительно взвесив все «за» и «против» и все последствия своего решения, которые он может вообразить, его действия функционально равноценны вычислению «взвешенной суммы», производимому компьютером.

 

Если бы нам надо было составить программу, моделирующую на компьютере поведение образцовой машины выживания, которая принимает решения о том, следует ли ей вести себя альтруистически, мы, вероятно, действовали бы примерно следующим образом. Сначала надо составить список всех альтернативных типов поведения животного. Затем для каждого типа поведения составить программу вычисления взвешенной суммы. Все выигрыши, получаемые в результате поведения данного типа, помечаются знаком плюс, а все связанные с ним риски — знаком минус; все выигрыши и все риски перед суммированием следует взвесить путем умножения на соответствующий коэффициент родства. Для простоты мы можем прежде всего не проводить другие взвешивания, например связанные с возрастом и состоянием здоровья. Поскольку коэффициент родства данного индивидуума с самим собой равен 1 (т. е. он содержит, как это совершенно очевидно, 100%-собственных генов), риски и выигрыши для самого себя вообще не надо снижать, и в вычисления они должны входить с полным весом. Общая сумма для каждого из альтернативных типов поведения будет выглядеть следующим образом:

 

Чистый выигрыш при данном типе поведения = Выигрыш для себя – Риск для себя + 1/2 Выигрыша для брата – 1/2 Риска для брата + 1/2 Выигрыша для другого брата – 1/2 Риска для другого брата + 1/8 выигрыша для двоюродного брата – 1/8 риска для двоюродного брата + 1/2 Выигрыша для ребенка – 1/2 Риска для ребенка + и т. д.

 

Результатом такого суммирования выигрышей будет число, называемое оценкой чистого выигрыша при данном типе поведения. Затем модельное животное вычисляет эквивалентную сумму для каждого альтернативного типа поведения, имеющегося в его репертуаре. Наконец, оно выбирает и реализует поведение того типа, при котором достигается наивысший чистый выигрыш. Даже если все оценки оказываются со знаком минус, оно выбирает наилучшую форму поведения, т. е. связанную с наименьшим риском. Помните, что любое позитивное действие сопряжено с затратами энергии и времени, которые можно было бы израсходовать на другие дела. Если ничегонеделанье оказывается тем «поведением», при котором достигается наивысший выигрыш, то модельное животное будет бездельничать.

 

Это в высшей степени упрощенный пример, в данном случае выраженный в форме субъективного монолога, а не компьютерной модели. Предположим, что я животное, нашедшее в лесу место, где растет 8 г.ибов. Прикинув их питательную ценность и несколько уменьшив оценку ввиду наличия риска, хотя и очень незначительного, что они, возможно, ядовитые, я решил, что каждый гриб «стоит» +6 единиц (единицы — произвольно установленные выигрыши, как в гл. 5). Грибы такие большие, что я мог бы съесть лишь три из них. Должен ли я известить кого-то другого о своей находке? Кто может меня услышать? Мой брат B (коэффициент его родства со мной = 1/2), двоюродный брат C (коэффициент родства = 1/8) и D (он мне, в общем, не родственник; коэффициент его родства со мной выражается такой малой величиной, что ее практически можно приравнять к нулю). Если я промолчу о своей находке, то мой чистый выигрыш составит +6 за каждый из трех съеденных мной грибов, т. е. всего +18. Чтобы оценить чистый выигрыш в том случае, если я объявлю о своей находке, нужно будет произвести некоторые расчеты. Восемь грибов придется разделить поровну на четверых. Выигрыш, который я получу от двух съеденных мной самим грибов, по +6 единиц каждый, составит +12. Но я получу также некоторый выигрыш от того, что мой родной и двоюродный братья съедят по два гриба каждый, поскольку у меня с ними есть общие гены. Мой суммарный выигрыш составит (1x12) + (1/2x12) + (1/8x12) + (0x12) = 19 1/2. Соответствующий чистый выигрыш при эгоистичном поведении был равен +18. Результаты практически совпадают, но приговор ясен. Я должен подать сигнал, что найдена пища; проявленный мной альтруизм в этом случае обернется выигрышем для моих эгоистичных генов.

 

Я упростил ситуацию, сделав допущение, что индивидуальное животное вычисляет, какой образ действий будет оптимальным для его генов. На самом же деле генофонд пополняется генами, под действием которых тела ведут себя так, как если бы они производили подобные вычисления.

 

Во всяком случае эти вычисления — лишь весьма предварительное первое приближение к тому, какими они должны быть в идеале. Мы пренебрегли многими факторами, в том числе возрастом производящих эти вычисления индивидуумов. Кроме того, если я перед тем, как обнаружить грибы, плотно поел, чистый выигрыш от оповещения о моей находке будет выше, чем если бы я был голоден. В лучшем из миров возможностям прогрессивного усовершенствования вычислений нет конца. Но реальная жизнь протекает не в лучшем из миров. Мы не можем ожидать, что реальные животные, выбирая оптимальное решение, будут учитывать абсолютно все детали. Путем наблюдений и экспериментов в природных условиях нам предстоит выяснить, сколь близко на самом деле реальные животные подходят к достижению идеального анализа расходов-доходов.

 

Просто для того, чтобы убедить себя, что субъективные примеры не слишком сильно увели нас в сторону, вернемся ненадолго к генному языку. Живые тела это машины, запрограммированные теми генами, которые выжили. Гены, которые выжили, сумели сделать это в условиях, которые в среднем были характерны для среды данного вида. Поэтому оценки расходов и доходов основаны на прошлом «опыте», точно так же, как у человека, принимающего решение. Однако опыт в этом случае означает опыт гена или, точнее, условий, в которых ген сумел выжить в прошлом. (Поскольку гены, кроме того, наделяют машины выживания способностью к научению, можно сказать, что некоторые оценки расходов-доходов производились также на основе индивидуального опыта.) До тех пор, пока условия изменяются не слишком сильно, эти оценки будут оставаться надежными оценками и машины выживания будут в среднем принимать верные решения. В случае коренных изменений условий машины выживания будут склонны принимать ошибочные решения и их гены будут расплачиваться за это. Именно так оно и бывает: если человек принимает решения, основанные на устаревшей информации, то эти решения обычно оказываются ошибочными.

 

В оценки коэффициентов родства также могут вкрасться ошибки и неточности. До сих пор в наших упрощенных расчетах мы исходили из того, что машинам выживания как бы известно, кто связан с ними родством и каков коэффициент этого родства. В реальной жизни такая твердая уверенность иногда существует, но чаще коэффициент родства можно оценить лишь как некую среднюю величину. Допустим, например, что A и B могут быть с равной вероятностью либо единоутробными, либо родными братьями. Их коэффициент родства равен либо 1/4, либо 1/2, но поскольку нам не известно, являются ли они единоутробными или родными братьями, эффективно можно использовать только среднее значение, т. е. 3/8. Если же твердо известно, что мать у них одна, но вероятность общего отца составляет всего 1 к 10, то можно на 90% быть уверенными в том, что они единоутробные братья и на 10%-что они родные братья; эффективный коэффициент родства составляет в этом случае (1/10 x 1/2) + (9/10 x 1/4) = 0,275.

 

Но говоря о 90%-ной уверенности, кого мы имеем в виду? Натуралиста, который обрел ее после длительных полевых исследований, или самих животных? При благоприятных обстоятельствах это почти одно и то же. Для того чтобы понять это, нам надо подумать, каким образом животные могли бы распознавать своих близких родственников[6.7]: #note6.7.

 

Мы знаем, кто наши родственники, потому что нам сказали об этом, потому что у них есть имена, потому что у нас существуют формальные браки, а также соответствующие записи и просто хорошая память. Многие социальные антропологи поглощены выяснением «кровного родства» в обществах, которые они изучают. Они имеют при этом в виду не подлинное генетическое родство, а субъективные и культурные представления о родстве. В обычаях и ритуальных обрядах различных племен придается большое значение кровному родству; широко распространено поклонение предкам, во многих областях жизни доминируют чувство долга и верность семье. Кровную месть и войны между кланами легко интерпретировать в свете генетической теории Гамильтона. Запрет на кровосмешение доказывает осознание человеком значения кровного родства, хотя генетические преимущества, которые дает этот запрет, не имеют никакого отношения к альтруизму; он, вероятно, связан с пагубными эффектами рецессивных генов, проявляющимися при родственных браках. (Почему-то многим антропологам не нравится это объяснение.) [6.8]: #note6.8.

 

Как дикие животные могли бы «знать», кто приходится им родственниками, или, иными словами, каким правилам они должны следовать в своем поведении, чтобы его косвенным эффектом была именно способность распознавать кровных родственников? Нужно, чтобы животные получали от своих генов какое-то простое правило действия, правило, которое не связано с полным осознанием конечной цели данного действия, но которое тем не менее работает по крайней мере при средних условиях. Нам, людям, знакомы эти правила и они столь могущественны, что если мы не слишком дальновидны, то подчиняемся правилу как таковому, даже когда прекрасно видим, что оно не сулит ни нам, ни кому-либо другому ничего хорошего. Например, некоторые правоверные евреи или мусульмане готовы лучше голодать, чем нарушить запрет на свинину. Каковы те простые практические правила, которым могли бы подчиняться животные и косвенный эффект которых при нормальных условиях направлен на благо их близких родственников?


Дата добавления: 2018-10-27; просмотров: 229; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!