Мим или МЕМ Читать отсюда обязательно. 8 страница



 

Я должен подчеркнуть, что это всего лишь спекуляции, основанные на теории Медоуэра. Хотя в некотором смысле в теории Медоуэра по логике вещей должна быть доля правды, это не обязательно означает, что она позволяет правильно объяснить любой реальный пример старческого разрушения организма. Для наших нынешних целей важно, что взгляд на эволюцию с точки зрения отбора генов позволяет без труда объяснить тенденцию индивидуумов умирать, когда они становятся старыми. Допущение о смертности индивидуумов, занимающее центральное место в наших рассуждениях в этой главе, оправдано в рамках теории Медоуэра.

 

Другое допущение, о котором я лишь упомянул, — существование полового размножения и кроссинговера — оправдать труднее. Кроссинговер имеет место не всегда. У самцов дрозофилы он не происходит. У дрозофилы есть ген, который подавляет кроссинговер также и у самок. Если бы нам надо было разводить популяцию мух, в которой этот ген содержали бы все особи, хромосома в «хромосомном фонде» стала бы основной неделимой единицей естественного отбора. В сущности, если довести наше определение до его логического конца, целую хромосому следовало бы рассматривать как один «ген».

 

Существуют альтернативы и для полового размножения. Самки тлей без участия отцов рождают живых самок, каждая из которых содержит все гены своей матери. (Между прочим, зародыш, находящийся в «матке» своей матери, может содержать в своей собственной матке еще меньший зародыш. Таким образом, самка тли может родить одновременно дочку и внучку, которые обе эквивалентны идентичным близнецам самой этой самки.) Многие растения размножаются вегетативно, выбрасывая боковые побеги. В этом случае мы предпочитаем говорить о росте, а не о размножении; но тогда, если поразмыслить, различие между ростом и неполовым размножением вообще не очень велико, поскольку как то, так и другое происходит путем простого митотического деления клетки. Иногда растения, возникающие в результате вегетативного размножения, отделяются от родительского растения. В других случаях, например у ильма, корневые отпрыски остаются связанными с родительскими деревьями. В сущности весь ильмовый лес можно рассматривать как один индивидуум.

 

Итак, возникает следующий вопрос: почему все мы прилагаем столько усилий, чтобы смешать наши гены с генами кого-то другого, прежде чем зачать ребенка, если тли и ильмы обходятся без этого? Такой образ действий кажется довольно странным. Почему вообще возник пол, это странное искажение прямой репликации? Что хорошего в половом размножении? [3.5]: #note3.5.

 

Это вопрос, на который эволюционисту ответить крайне трудно. Серьезные попытки разобраться в этой проблеме по большей части сопряжены со сложнейшими математическими рассуждениями. Я собираюсь честно избежать их, ограничившись лишь одним заявлением: трудности, с которыми сталкиваются теоретики, пытаясь объяснить эволюцию пола, по крайней мере отчасти связаны с тем, что по их представлениям индивидуум старается максимизировать число своих выживающих генов. В свете таких представлений половое размножение воспринимается как нечто парадоксальное, поскольку это «неэффективный» для индивидуума способ размножать свои гены: каждый ребенок получает при этом только 50% генов данной самки, а остальные 50% поставляет ее половой партнер. Если бы только самка подобно тле отпочковывала детенышей, которые были бы ее точными копиями, то она передавала бы следующему поколению в теле каждого детеныша все 100% своих генов. Этот кажущийся парадокс заставил некоторых теоретиков примкнуть к сторонникам теории группового отбора, поскольку на уровне группы относительно легко представить себе преимущества полового процесса. Как высказался по этому поводу без лишних слов У. Бодмер (W. F. Bodmer), половое размножение «облегчает накопление в одном индивидууме благоприятных мутаций, которые возникали по отдельности у разных индивидуумов».

 

Однако этот парадокс покажется менее парадоксальным, если в соответствии с приведенными в моей книге доводами рассматривать индивидуум как машину выживания, создаваемую короткоживущей конфедерацией долгоживущих генов. В этом случае «эффективность» с точки зрения индивидуума в целом окажется несущественной. Половое размножение и его альтернатива — размножение бесполое — будут рассматриваться как признак, контролируемый одним геном, подобно такому признаку, как цвет глаз (голубые или карие). Ген, «определяющий» половое размножение, манипулирует всеми остальными генами в своих эгоистичных целях. То же самое делает ген кроссинговера. Существуют даже особые гены, называемые мутаторами, которые управляют частотой ошибок, допускаемых при копировании других генов.

 

По определению, ошибка при копировании неблагоприятна для гена, который был неверно скопирован. Но если она благоприятна для индуцировавшего ее эгоистичного гена-мутатора, то этот мутатор может распространиться в генофонде. Точно так же, если кроссинговер создает преимущество для гена кроссинговера, то этого достаточно для объяснения существования кроссинговера. А если половое размножение как противоположное бесполому благоприятно для гена, определяющего половое размножение, то этого достаточно для объяснения существования последнего. Благоприятно ли оно для всех остальных генов данного индивидуума, не очень важно. С точки зрения эгоистичного гена половое размножение вовсе не такое уж странное явление.

 

Эти рассуждения угрожающе приближаются к порочному кругу, поскольку существование полового размножения — непременное предварительное условие для целой цепи рассуждений, которые ведут к тому, чтобы считать ген единицей отбора. Я полагаю, что этого порочного круга можно избежать, но настоящая книга — не место для дальнейшего обсуждения данного вопроса. Половое размножение существует. Уж это точно. Именно благодаря существованию полового размножения и кроссинговера мелкая генетическая единица, или ген, может рассматриваться в качестве наиболее вероятного кандидата на роль фундаментального независимого фактора эволюции.

 

Половое размножение — не единственный кажущийся парадокс, который становится менее запутанным, как только мы подходим к нему с позиций эгоистичного гена. Кажется, например, что организмы содержат в себе гораздо больше ДНК, чем это им необходимо: значительная часть ДНК никогда не транслируется в белок. С точки зрения индивидуального организма это представляется парадоксальным. Если «предназначение» ДНК состоит в том, чтобы надзирать за построением организмов, то очень странно, что значительная ее часть не принимает в этом участия. Биологи ломают себе голову, пытаясь понять, какую полезную функцию несет эта, казалось бы, избыточная ДНК. Однако с точки зрения самих эгоистичных генов в этом нет никакого парадокса. Истинное «предназначение» ДНК состоит в том, чтобы выжить -не больше и не меньше. Проще всего объяснить наличие избыточной ДНК, предположив, что это некий паразит или в лучшем случае неопасный, но бесполезный пассажир, попросивший подвезти его в машине выживания, созданной остальной ДНК [3.6]: #note3.6.

 

Некоторые люди возражают против такого крайне «геноцентрического», по их представлениям, взгляда на эволюцию. В конечном счете, заявляют они, на самом деле живут или умирают целостные индивидуумы со всеми своими генами. Надеюсь, в этой главе я достаточно подробно разъяснил, что здесь на самом деле нет никаких разногласий. Точно так же, как гонку выигрывают или проигрывают целые лодки, выживают или умирают действительно индивидуумы, и непосредственное проявление естественного отбора почти всегда наблюдается на уровне индивидуумов. Однако долговременные последствия неслучайных смерти и успеха размножения индивидуумов выражаются в форме изменяющихся частот генов в генофонде. С некоторыми оговорками, генофонд играет для современных репликаторов ту самую роль, которую первичный бульон играл для первых репликаторов. Половое размножение и кроссинговер как бы обеспечивают сохранение современного эквивалента этого бульона в жидком состоянии. Благодаря половому процессу и кроссинговеру генофонд все время хорошо перемешивается, а гены частично перетасовываются. Эволюция — процесс, с помощью которого число одних генов в генофонде возрастает, а число других уменьшается. Было бы хорошо, если бы мы при попытке объяснить эволюцию какого-нибудь признака, например альтруистичного поведения, всякий раз просто спрашивали самих себя: «А какое действие окажет этот признак на частоты генов в генофонде?» Иногда язык генов становится несколько нудным, и мы для краткости и живости будем прибегать к метафорам. Но мы всегда будем придирчиво оценивать наши метафоры, чтобы в случае необходимости можно было вновь вернуться к генному языку.

 

В той мере, в какой это касается отдельного гена, генофонд — это тот бульон, в котором протекает жизнь гена. Единственное изменение состоит в том, что нынче он обеспечивает свое существование, кооперируясь со сменяющими одна другую группами компаньонов, которых он черпает из генофонда, создавая одну за другой смертные машины выживания. Этим машинам выживания и тому, в каком смысле можно говорить, что гены контролируют их поведение, посвящена гл. 4.

 

Глава 4. Генная машина

 

Вначале машины выживания служили всего лишь пассивными вместилищами для генов, предоставляя им только стены для защиты от химических средств нападения их соперников и от случайных бомбардировок окружающими молекулами. В этот ранний период они «кормились» на органических молекулах, в изобилии содержавшихся в первичном бульоне. Беззаботной жизни пришел конец, когда запасы органической пищи, медленно создававшейся в первичном бульоне в течение многих веков под действием солнечного света, были исчерпаны. Одна из главных ветвей машин выживания, которые мы теперь называем растениями, начала сама непосредственно использовать солнечный свет для построения из простых молекул более сложных, вновь введя в действие процессы синтеза, протекавшие в первичном бульоне, однако теперь эти процессы происходили гораздо быстрее. Другая ветвь, называемая теперь животными, «открыла» для себя возможность эксплуатировать растения, поедая либо непосредственно плоды их биохимической деятельности, либо других животных. В процессе эволюции обе главные ветви машин выживания создавали все более и более замысловатые способы повышения своей эффективности в соответствии со своими различными образами жизни, непрерывно расширяя круг доступных ниш и местообитаний. Главные ветви делились на ветки и веточки, каждая из которых достигала совершенства в приспособлении к тому или иному специализированному образу жизни: в море, на земле, в воздухе, под землей, на деревьях, в телах других организмов. В результате такого ветвления возникало огромное разнообразие животных и растений, так поражающее нас сегодня.

 

Как у животных, так и у растений в результате эволюции возникли многоклеточные тела, причем каждая клетка получила полные копии всех генов, положенных данному виду. Мы не знаем, когда, почему и сколько раз это происходило. Некоторые авторы прибегают к метафоре, описывая тело как колонию клеток. Я предпочитаю представлять тело как колонию генов, а клетку — как удобную рабочую единицу для химической деятельности генов.

 

Но даже будучи колониями генов тела в своем поведении несомненно обрели некую индивидуальность. Животное движется как согласованное целое. Субъективно я воспринимаю себя как нечто единое, а не как колонию. Это естественно. Отбор благоприятствовал генам, способным сотрудничать с другими генами. В отчаянной конкуренции за скудные ресурсы, в непрерывной борьбе за поедание других машин выживания и в стремлении избежать того, чтобы быть съеденным самому, центральная координация активности этой «коммуны» несомненно давала преимущество по сравнению с анархией. В наши дни сложнейшая взаимная коэволюция генов достигла такого уровня, что этот «коммунальный» характер отдельной машины выживания буквально невозможно разглядеть. Многие биологи в самом деле не признают его и не согласятся со мной.

 

К счастью, несогласие это носит, в сущности, академический характер и не помешает книге в остальном, как сказали бы журналисты, «заслуживать доверия». Подобно тому, как не имеет смысла говорить о квантах и элементарных частицах, если речь идет о работе автомобиля, ни к чему все время упоминать гены, обсуждая поведение машин выживания. На практике бывает удобно рассматривать отдельное тело как фактор, который «старается» увеличить число всех своих генов в последующих поколениях. Я буду пользоваться этим удобным языком. Выражения «альтруистичное поведение» и «эгоистичное поведение» всегда означают поведение одного животного тела по отношению к другому, если только нет специальных оговорок.

 

Эта глава посвящена поведению — умению быстро двигаться, которое широко используется животной ветвью машин выживания. Животные стали активными предприимчивыми носителями для генов — генными машинами. Характерная черта поведения в том смысле, какой вкладывают в этот термин биологи, это быстрота. Растения двигаются, но очень медленно. В кинофильме, полученном методом цейтраферной съемки, лазающие растения выглядят, как активные животные. Но на самом деле движение растений представляет собой главным образом необратимый рост. В отличие от этого у животных в процессе эволюции возникли приспособления, озадачивающие в сотни тысяч раз более быстрое движение. Кроме того, движения, совершаемые животными, обратимы и их можно повторять бесчисленное множество раз.

 

Приспособление, возникшее у животных в процессе эволюции для ускорения движения, — это мышца. Мышцы — это двигатели, которые, подобно паровому двигателю и двигателю внутреннего сгорания, расходуют энергию, запасенную в химическом топливе, для совершения механической работы. Различие между ними состоит в том, что непосредственная механическая сила данной мышцы имеет форму напряжения, а не давления газа, как в паровом двигателе и двигателе внутреннего сгорания. Но мышцы подобны двигателям в том смысле, что их усилие часто прилагается к канатам и рычагам с шарнирами. В наших телах рычаги — это кости, канаты — сухожилия, а шарниры — суставы. Нам известно очень многое о тех процессах на молекулярном уровне, которые происходят при работе мышцы, но меня больше интересует вопрос о ритме мышечных сокращений.

 

Приходилось ли вам наблюдать за работой какого-либо сложного искусственного механизма — вязальной или швейной машины, ткацкого станка, автоматической разливочной линии или пресса-подборщика сена? Поражает хитроумная слаженность всех операций. Клапаны открываются и закрываются в нужном порядке, стальные пальцы ловко завязывают узел на веревке, стягивающий кипу сена, а затем именно в нужный момент выскакивает нож и обрезает веревку. Во многих машинах, созданных человеком, согласование операций во времени осуществляется при помощи блестящего изобретения — кулачкового механизма. Этот механизм преобразует простое вращательное движение в сложную периодическую последовательность операций при помощи эксцентрика или колеса специальной формы. На сходном принципе основана и работа музыкальной шкатулки. В других инструментах, таких, как орган и пианола, используются бумажные ленты или карты с дырочками, расположенными определенным образом. В последнее время эти простые механические таймеры стали заменять электронными. Цифровые вычислительные машины служат примерами больших и разнообразных электронных устройств, которые можно использовать для генерирования сложных движений, происходящих в строго определенном ритме. Основным элементом современной электронной машины, такой, как компьютер, служит полупроводник, одна из разновидностей которого — транзистор — хорошо нам знакома.

 

Машины выживания далеко обошли кулачки и перфокарты. Аппарат, который они используют для согласования во времени своих движений, имеет больше общего с ЭВМ, хотя его действие основано на совершенно иных принципах. Главная единица биологического компьютера — нервная клетка, или нейрон, — по своему внутреннему устройству совсем не похожа на транзистор. Конечно, код, с помощью которого нейроны обмениваются информацией, напоминает код, основанный на последовательности импульсов, который используется в цифровых вычислительных машинах, однако отдельный нейрон гораздо более хитроумная единица для переработки информации, чем транзистор. Вместо всего-навсего трех связей с другими компонентами у одного нейрона их может быть десятки тысяч. Нейрон действует медленнее, чем транзистор, но он достиг гораздо большего в направлении миниатюризации, которой на протяжении двух последних десятилетий уделялось главное внимание в электронной промышленности. В этом нетрудно убедиться уже по одному тому, что в головном мозгу человека имеется примерно 10^11 нейронов, тогда как транзисторов черепная коробка могла бы вместить всего несколько сотен.

 

Растениям нейроны не нужны, потому что они могут обеспечить свое существование, не сходя с места; однако у преобладающего большинства животных нейроны имеются. Возможно, нейрон был «открыт» на ранних стадиях эволюции животных и унаследован всеми их группами, но не исключено, что его «открытие» происходило независимо несколько раз.

 

В своей основе нейроны — это просто клетки; подобно другим клеткам они содержат ядро и хромосомы. Но их клеточные стенки вытянуты в виде длинных тонких отростков, похожих на провода. Часто у нейрона имеется один особенно длинный «провод», называемый аксоном. Хотя в ширину аксон имеет микроскопические размеры, в длину он может достигать нескольких метров: например, у жирафа есть аксоны, которые тянутся во всю длину его шеи. Аксоны обычно собраны в пучки, образуя толстые многожильные кабели, называемые нервами. Нервы тянутся от одной части тела к другой, передавая информацию, подобно магистральным телефонным кабелям. У других нейронов аксоны короткие и не выходят за пределы плотных скоплений нервной ткани, называемых ганглиями, а в тех случаях, когда они очень большие — мозгом. В функциональном плане мозг можно рассматривать как аналог компьютера[4.1]: #note4.1. Мозг и компьютер аналогичны, поскольку как тот, так и другой после анализа поступающей извне сложной информации и сопоставления ее с информацией, хранящейся в памяти, генерируют на выходе комплексную информацию.

 

Главный способ, которым мозг помогает машинам выживания достигнуть успеха, это регуляция и координация мышечных сокращений. Для этого необходимы провода, идущие к мышцам; провода эти называются двигательными (моторными) нервами. Но регуляция и координация мышечных сокращений может надежно обеспечить сохранность генов лишь в том случае, если ритм этих сокращений каким-то образом соотносится с ритмом событий, происходящих во внешнем мире. Важно, чтобы челюстные мышцы сокращались только тогда, когда между челюстями находится что-то, что стоило бы откусить, а мышцы ноги сокращались так, как это необходимо для бега, когда надо бежать за кем-то или от кого-то. Поэтому естественный отбор благоприятствовал сохранению животных, приобретших органы чувств — приспособления, позволяющие транслировать образы происходящих во внешнем мире физических событий в импульсный код нейронов. Головной мозг соединен с органами чувств — глазами, ушами, вкусовыми луковицами и т. п. — проводами, называемыми чувствительными (сенсорными) нервами. Деятельность сенсорных систем особенно непостижима, потому что они достигают гораздо большего искусства в распознавании образов, чем самые лучшие и дорогостоящие машины, созданные человеком; если бы этого не было, то все машинистки остались бы без работы; их место заняли бы машины, распознающие устную речь, или машины, способные считывать рукописный текст. Но машинистки будут нужны еще в течение многих десятков лет.


Дата добавления: 2018-10-27; просмотров: 226; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!