Продукты доменного производства



Основным продуктом доменного производства является чугун. В чугуне углерод может содержаться в виде механи­ческой примеси (свободного графита) и химического соеди­нения — карбида железа (Fe3C), называемого цементитом.

Чугуны, содержащие свободный графит, имеют в изло­ме серый цвет и крупнозернистое строение. Эти чугуны применяются для получения отливок, так как хорошо за­полняют литейные формы и достаточно легко поддаются обработке режущим инструментом. Такой чугун называют серым или литейным чугуном. Характерным для него яв­ляется повышенное содержание кремния и пониженное — серы.

Чугуны, содержащие углерод в виде химического соеди­нения с железом (Fe3C), имеют белый излом. Для отливок они малопригодны и трудно обрабатываются режущим ин­струментом. Эти чугуны преимущественно перерабатыва­ются на сталь, они имеют пониженное содержание крем­ния и называются белыми или передельными чугунами.

Кроме литейных и передельных чугунов в доменных печах получают специальные чугуны, или ферросплавы. Ферросплавы имеют повышенное (более 10%) содержание некоторых элементов, например кремния, марганца. При­меняются ферросплавы в качестве специальных присадок при выплавке стали.

Кроме чугуна в доменном .производстве получают до­менный газ и шлак.

Доменный газ и шлак представляют собой побочные продукты плавки.

Доменный газ используется в качестве топлива. Он улавливается в области колошника и подвергается очист­ке. Около 25% доменного газа используется непосредствен­но в доменном процессе, остальные 75% идут для сжига­ния на ТЭЦ.

Шлак идет для производства строительных материалов


 

32. Технология производства стали в кислородных конвертерах

33. Технология производства стали в мартеновских печах

34. Технология производства стали а электрических печах

 

Металлургия стали

Значительную часть стали получают из передельного чугуна. Сущность процесса заключается в уменьшении в чугуне содержания углерода и примесей (серы, фосфора, кремния и марганца) путем их окисления. Кроме чугуна в состав шихты могут входить металлический лом, желез­ная руда, флюсы. Сталь выплавляют в кислородных кон­верторах, мартеновских и электрических печах.

Выплавка стали в кислородных конвертерах

Сущность процесса заключается в том, что через рас­плавленный чугун и небольшое количество металлическо­го лома черных металлов, загруженных в конвертор, про­дувается кислород, образуется оксид железа FО, который, взаимодействуя с углеродом и примесями чугуна, окисляет и обращает их в газ и шлак. Реакции окисления идут с выделением тепла. Чугун при этом превращается в сталь. Конвертер с кислородным дутьем (рис. 2) состоит из стального корпуса, футерованного огнеупорным кирпичом. Кон­вертер имеет поворотное устройство, с помощью которого может устанавливаться в наклонном положении. В таком положении его заливают жидким чугуном, затем устанав­ливают вертикально и через фурму производят продувку кислородом. По окончании процесса конвертер вновь на­клоняют и выпускают сталь и шлак.

Емкость современных конвертеров составляет 300— 350 т. Продолжительность плавки 30—40 минут. Темпера­тура, развиваемая в плавильном пространстве, достигает 1800 °С. Высокая производительность агрегата, простота конструкции и обслуживания, отсутствие потребности в топливе обеспечивают невысокую себестоимость конвертор­ной стали.

К недостаткам работы конверторов относятся невозмож­ность переработки значительного количества металличес­кого лома, значительный угар металла (5—10%), повышен­ное содержание вредных примесей в получаемой стали.

Конвертерная сталь относится к стали обыкновенного качества. Такая сталь идет для получения проката раз­личного профиля — листов, прутков, трубного проката, уголков и т. д. Кислородное конвертирование — перспек­тивный процесс, поскольку с его помощью в последние годы освоено получение качественной стали.

 

Выплавка стали в мартеновских печах

Процесс выплавки разработан французскими металлур­гами Э. и П. Мартенами. Он отличается более высокой по сравнению с конвертированием температурой, развиваемой в плавильном пространстве печи, — 1800—1900 °С, что позволяет перерабатывать чугун в твердом, жидком состоя­нии, стальные отходы металлургического и машинострои­тельного производства. В состав шихты могут входить же­лезная руда, флюсы, марганец. В качестве топлива в мар­теновском процессе используется природный газ.

Мартеновская печь (рис. 3) работает следующим образом.

Шихта через загрузочные окна 1 загружается в пла­вильное пространство 2, выложенное огнеупорным кирпи­чом. Природный газ и воздух, образующие факел для расплавления шихты, поступают по каналам сначала справа, а продукты горения отводятся слева через регенератор 3, отдавая свое тепло кирпичной кладке регенератора. Через каждые 10—15 минут направления потоков газов изменя­ются на обратные. Природный газ и воздух, проходя через регенератор, утилизируют тепло отходящих газов. Из ре­генератора после очистки продукты горения отводятся.

Готовая сталь выпускается через отверстие — летку, расположенную в задней стенке печи.

Различают два варианта мартеновского процесса: скрап-процесс и скрап-рудный процесс.

При скрап-процессе шихта на 60—80% состоит из стального лома и на 20—40% — из чушкового чугуна. Та­кой процесс используется на металлургических заводах, где нет доменных печей. Скрап-процесс позволяет вводить в состав стали легирующие добавки (марганец, хром, вана­дий и др.), улучшающие качество стали.

При скрап-рудном процессе шихта состоит на 60—75% из жидкого чугуна, небольшого количества железной руды и металлического лома. Этот процесс используется на метал­лургических заводах, имеющих доменные печи. Скрап-руд­ный процесс — наиболее распространенный процесс плавки.

Емкость мартеновских печей достигает 900 т. Время плавки составляет 3—6 часов. Достоинством мартеновско­го способа является возможность широкого использования в составе шихты металлического лома и получения качест­венной стали. Основными недостатками мартеновского про­цесса следует считать значительную продолжительность плавки и большой расход топлива.

 

Выплавка стали в электрических печах

Электросталеплавильный процесс, появившийся в кон­це XIX в., благодаря поддержанию в плавильном простран­стве повышенной температуры (порядка 2000 °С и выше), обеспечивает получение стали более высокого качества по сравнению с конверторным и мартеновским процессами. Высокая температура дает возможность полнее удалять примеси, вводить в состав стали тугоплавкие легирующие металлы, значительно повышающие ее прочность, твер­дость и коррозийную стойкость.

Электрические плавильные печи разделяются на дуго­вые и индукционные.

Дуговая электрическая печь (рис. 4) состоит из сталь­ного кожуха, футерованного огнеупорным кирпичом. Сверху через отверстия в своде печи введены угольные электроды. Шихта загружается через загрузочное окно 1. Шихта плавится под воздействием высокой температуры, создаваемой электрической дугой, возникающей при про­хождении электрического тока между электродами 2 и шихтой 3. Готовую сталь выпускают по желобу летки 4 при наклоне печи, осуществляемом с помощью поворотно­го механизма 5.

Емкость дуговых печей колеблется от 0,5 до 400 т, дли­тельность плавки составляет 3-6 часов.

В индукционной печи (рис. 5) плавка осуществляется в тигле из огнеупорного материала 1. Вокруг тигля распо­лагается спиральный индуктор 2, изготовленный из мед­ной трубки, в которой циркулирует охлаждающая вода.

При прохождении тока через индуктор в шихте 4 на­водятся мощные вихревые токи, которые обеспечивают плавление шихты. Шихтовые материалы загружаются сверху. Для выпуска готовой стали тигель наклоняют в сторону сливного желоба 3.

В индукционных печах выплавляют особо высококачест­венные стали. Вместимость печей составляет от десятков килограммов до 2—5 т металла. Продолжительность одной плавки составляет от 0,5 до 2,5 часов.

Электрометаллургический процесс — основной способ производства высококачественных и особо высококачественных сталей. Вместе с тем, себестоимость электростали значительно выше конверторной и мартеновской стали. Недостатком электрических печей является относительно малая вместимость, сложность и высокая стоимость элект­рооборудования, низкая стойкость электродов и тиглей, не­обходимость использования чистых шихтовых материалов.

Разливка стали

Разливка стали имеет важное значение в, металлургии и позволяет придать полученной стали первичную форму — форму слитка.

Применяют два способа разливки: разливка в излож­ницы и непрерывная разливка стали (рис. 6).

Разливка в изложницы подразделяется на разливку сверху и сифонную разливку.

Разливка сверху используется для получения крупных слитков (десятки тонн). Преимуществом разливки являет­ся простое разливочное оборудование, а недостатками — малая производительность и повышенные потери материа­ла за счет усадочной раковины, образующейся в слитке при затвердевании стали.

Сифонный способ разливки (разливка снизу) позволяет получать небольшие слитки (тонны). Производительность процесса выше разливки сверху, поскольку заполняется одновременно несколько изложниц, потери материала мень­ше. Недостаток способа — сложное разливочное оборудо­вание.

Непрерывная разливка стали — наиболее производи­тельный и экономичный способ разливки. Из ковша 1 че­рез разливочное устройство расплавленная сталь поступа­ет в охлаждаемый водой кристаллизатор 2. В кристалли­заторе сталь затвердевает и в виде слитка 3 непрерывно вытягивается вращающимися роликами 4. Нужной длины слитки отрезаются ацетилено-кислородной горелкой 5.

Преимуществом непрерывной разливки является высо­кая производительность процесса, возможность получения необходимой формы сочетания слитки, что позволяет на­править их непосредственно на обработку резанием и про­катку. При непрерывной разливке до пяти раз сокраща­ются отходы материалы по сравнению с разливкой в из­ложницы.

Недостатком способа является сложность разливочно­го оборудования. Однако применение непрерывной разлив­ки стали в мире быстро увеличивается. Перспективной яв­ляется организация единого технологического процесса: не­прерывная разливка — прокатка стали.

Прогрессивные способы получения стали

Бездоменная металлургия. Прогрессивным способом является получение стали прямым восстановлением из руд, минуя доменный процесс. Железистый концентрат посту­пает по пульпопроводу прямо на завод, где вавтоматических шахтных печах при температуре 1000 0С получают металлизированные окатыши. Окатыши в качестве ших­ты поступают в электропечи. Полученный материал после непрерывной разливки сразу идет на прокатку.

Способ весьма экономичен. Отпадают затраты на кок­сохимическое производство, качество полученной стали вы­сокое, поскольку в рудах Курской магнитной аномалии практически отсутствуют фосфор и сера. Производитель­ность бездоменного процесса заметно выше традиционных способов выплавки стали.

Электрошлаковый переплав (ЭШП). Данным способом получают особо высококачественные легированные стали. Для этого сталь обыкновенного качества подается в уста­новку ЭШП в виде прутков-электродов. Вследствие сопро­тивления электрода проходящему току выделяется боль­шое количество теплоты, отчего электрод плавится. Рас­плавленный металл электрода проходит через слой специального жидкого шлака и очищается от вредных при­месей и газов. Аналогичный способ — плазменно-дуговой переплав (ПДП). Источником тепла здесь служит плазмен­ная дуга с температурой до 10000 0С. Используется также электронно-лучевой переплав (ЭЛП). Плавление происхо­дит под действием потока электронов, излучаемых высо­ковольтной кобальтовой пушкой с созданием в плавиль­ном пространстве глубокого вакуума.

Достоинствами перечисленных способов является воз­можность получения стали и сплавов очень высокой чис­тоты, применение которых облегчает массу конструкций, увеличивает надежность и долговечность машин и меха­низмов. Такая сталь необходима для атомной, реактивной и космической техники.

 

35. Технология получения алюминия

  Производство алюминия

Алюминий — металл серебристо-белого цвета, темпе­ратура его плавления 660 0С, плотность 2,7 т/м3. Алюми­ний обладает высокой электро- и теплопроводностью, ус­тупая по этим свойствам серебру и меди, пластичностью и малой окисляемостью. Прочность и твердость алюминия невысокие.

Наибольшее применение алюминий получил в электро­технической промышленности для изготовления проводов и кабелей. Сплавы алюминия широко применяются в авиа­ции, машиностроении, пищевой промышленности.

Получают алюминий из руд с высоким содержанием глинозема: бокситов, нефелинов, алунитов и коалинов. Ос­новным сырьем для получения алюминия являются бокси­ты (50-60% глинозема).

Процесс получения алюминия состоит из двух стадий: получение глинозема (Аl203) из руды и производство алю­миния из глинозема. В зависимости от состава и свойств исходного сырья применяют различные способы получе­ния глинозема. Наиболее эффективным из них является щелочной способ. Выход глинозема из руды при этом спо­собе составляет около 87%.

Глинозем представляет собой прочное химическое со­единение, температура его плавления — 2050 0С. В этих условиях восстановление алюминия из глинозема весьма затруднительно. Поэтому алюминий получают электроли­зом из глинозема, растворённого в расплавленном криоли­те (3NaFuAlF3). Процесс проходит в электролизных ваннах (электролизерах). Ванна (рис. 8) представляет собой металлический корпус, футерованный углеродистыми бло­ками. В них вставляются медные катодные шины. Сверху в ванну опускается угольный электрод, представляющий собой анод.

В результате электролиза на дне ванны собирается жид­кий алюминий, который периодически откачивается с по­мощью вакуумного насоса.

Для увеличения степени чистоты алюминия его рафи­нируют. С этой целью алюминий в ковшах при темпера­туре 650-770 0С подвергают продувке хлором в течении 10-15 минут. Из алюминия удаляются примеси глинозе­ма, криолита и газы. Готовый алюминий разливают в из­ложницы.

Алюминий высокой чистоты получают электролитичес­ким рафинированием. Анодом в этом случае служит под­лежащий очистке алюминий, катодом — пластины из чис­того алюминия. Расплавы хлористых и фтористых солей используются в качестве электролита.

 

 

36. Технология получения меди

 

Металлургия цветных металлов

Широкое применение цветных металлов объясняется их специфическими свойствами: высокими электро- и тепло­проводностью, коррозийной стойкостью, жаропрочностью. Кроме того, цветные металлы способны образовывать спла­вы друг с другом и с черными металлами.

Цветные металлы классифицируют на четыре группы:

тяжелые — медь, никель, свинец, цинк, олово;

легкие — алюминий, магний, титан, кальций и др.;

благородные — золото, серебро, платина;

редкие — молибден, вольфрам, ванадий, уран и др.

 

Производство меди

Медь имеет красный цвет, температура ее плавления 1083 °С, плотность 8,96 т/м3. Медь хорошо проводит элек­тричество и тепло, отличается малой прочностью, высо­кой пластичностью. Медь используется в электро- и ра­диопромышленности, значительная часть ее идет на полу­чение сплавов.

Около 80% меди выплавляют из сульфидных руд. Ос­новными медными рудами являются медный колчедан (CuFeS2) и медный блеск (Cu,S).

Медные руды относительно бедны (содержание меди — не более 5%), поэтому их подвергают обогащению. С этой целью используют метод флотации, основанный на способ­ности тонко измельченных рудных минералов смачивать­ся некоторыми реагентами. Смесь измельченной руды, воды и реагентов помещается в специальной ванне, через кото­рую пропускается воздух. Благодаря пузырькам воздуха на поверхность ванны поднимаются частицы рудных ми­нералов, а пустая порода осаждается и удаляется. Содер­жание меди в полученном концентрате достигает до 30%.

Медный концентрат после обогащения содержит сернис­тые соединения. Для снижения содержания серы концент­рат подвергают обжигу, который ведут в специальных пе­чах при температуре 700—800 0С.

В результате обжига получают так называемый огарок и сернистый газ S02. Огарок направляется на плавку. Сер­нистый газ используется для получения серной кислоты.

Плавка огарка производится в отражательных печах, по устройству сходных с мартеновскими. В них одновре­менно может плавиться более 100 т огарка.

В конце плавки в печи образуется полупродукт — штейн (Cu2S4FeS), содержащий до 50% меди, а также же­лезо, серу, кислород и включающий небольшое количество золота, серебра, свинца и других металлов. Штейн слива­ют и направляют в конверторы для получения черновой меди.

Конвертор представляет собой футерованный изнутри металлический сосуд, установленный на опорных роликах и поворачивающийся вокруг горизонтальной оси (рис. 7). Масса плавки составляет до 1000 т. Воздушное дутье по­дается через фурмы, расположенные вдоль конверторов. Затем в конвертор подается кварцевый флюс. Продувка длится до 30 часов. В результате получают черновую медь.

Черновая медь содержит примеси железа, серы, мышь­яка, кислорода.

Примеси ухудшают свойства меди, поэтому черновую медь подвергают рафинированию. Рафинирование меди про­изводится огневым и электролитическим способами. Огне­вое рафинирование осуществляется в пламенных печах и производится в том случае, когда пренебрегают небольшим количеством благородных металлов, содержащихся в чер­новой меди. Окисление примесей в печи происходит за счет кислорода воздуха, который подается в жидкий металл. Готовую медь разливают на слитки или анодные пластины.

Для получения высококачественной меди и выделения из нее благородных металлов производят электролитичес­кое рафинирование. Для этого черновую медь в виде пластин (анодов) погружают в ванну с водным раствором мед­ного купороса в серной кислоте. Параллельно анодам под­вешивают тонкие листы чистой меди (катоды). При про­хождении постоянного тока аноды растворяются в воде и медь осаждается на катодах. За 10—12 суток на катодной пластине отлагается около 100 кг меди. Катоды затем пе­реплавляют и разливают в слитки.

В зависимости от степени чистоты различают ряд ма­рок меди (М00, МО, Ml, М2, МЗ, М4) с содержанием меди от 99,0 до 99,95%.


 

37. Обработка металлов давлением

 

Обработка металлов давлением

Сущность и значение процессов обработки металлов давлением

Способность металлов принимать пластическую дефор­мацию в горячем и холодном состоянии широко использу­ется в технике. При этом изменение формы осуществляет­ся преимущественно с помощью давящего на металл инст­румента, поэтому получение изделий таким способом называется обработкой металла давлением, или пластичес­кой обработкой.

Обработка металла давлением представляет собой важ­ный технологический процесс. При этом обеспечивается не только придание слитку или заготовке необходимой фор­мы и размеров, но совместно с другими видами обработки существенно улучшаются механические и другие свойства металлов.

Обработка металлов давлением основана на использо­вании пластичности металлов, способности твердого тела под действием внешних сил необратимо изменять форму без разрушения.

Процессы обработки давлением отличаются высокой производительностью. Так, при прокатке скорость выпус­ка готовой продукции составляет до 20-30 м/с, при горя­чей объемной штамповке за одну минуту на штамповоч­ном молоте или прессе изготавливают 2—3 поковки, при холодной листовой штамповке на одном прессе-автомате в одну минуту изготовляют до 1500 мелких деталей.

Основные виды обработки металлов давлением

Процессы обработки металлов давлением включают прокатку, волочение, прессование, объемную ковку и лис­товую штамповку.

Прокатка — процесс, при котором заготовка под дей­ствием сил трения втягивается в зазор между вращающи­мися валками и пластически деформируется ими (рис. 14).

Волочение — процесс протягивания катанного или прессованного прутка (или трубы) через постепенно сужа­ющееся отверстие в инструменте, называемом волочильной матрицей.

Прессование — процесс выдавливания металла из замк­нутой полости контейнера через матрицу, площадь отвер­стия которой меньше площади поперечного сечения исход­ной заготовки.

Ковка — процесс горячей обработки металлов давле­нием при помощи бойков или универсального подкладного инструмента. При ковке металл заготовки пластически де­формируется, постепенно приобретая заданную форму, раз­меры и свойства.

Объемная штамповка — придание заготовке заданной формы и размеров путем принудительного заполнения ма­териалом рабочей полости штампа. В отличие от ковки пластическое течение при штамповке ограничивается стен­ками матрицы.

Различают горячую и холодную объемную листовую штамповку.

 

Вовлечение

Обработка металла волочением, т. е. протягивание прутка через отверстие, выходные размеры которого мень­ше, чем исходное сечение прутка, находит широкое при­менение в металлургической, кабельной и машинострои­тельной промышленности. Волочением получают проволо­ку с минимальным диаметром 0,002 мм, прутки диаметром до 100 мм, причем не только круглого сечения, трубы, главным образом небольшого диаметра с тонкой стенкой.

В результате волочения поперечное сечение заготовки уменьшается, а длина увеличивается.

Волочением обрабатывают стали разнообразного хими­ческого состава, а также практически все цветные метал­лы и их сплавы.

Волочение выгодно отличается от механической обра­ботки металла резанием, так как при этом отсутствуют отходы металла в виде стружки, а сам процесс производи­тельнее и менее трудоемок.

Технологический процесс волочения состоит из трех ос­новных стадий: подготовка металла (очистка от окалины, нанесение смазки, заделка концов), волочение по опреде­ленному режиму и отделка (удаление дефектов, правка, резка на мерные длины, маркировка, консервационная смазка и пр.).

 

Ковка и штамповка металла

Ковкой и штамповкой изготовляют металлические из­делия — поковки, из которых затем получают детали, иду­щие на сборку машин, приборов, агрегатов и т. д. В ряде случаев штамповкой получают непосредственно готовые детали.

Поковки отличаются от детали припуском — опреде­ленным слоем металла поковки, снимаемом при последую­щей механической обработке,

Ковку и штамповку применяют почти во всех отрас­лях промышленности и особенно в машиностроении. Про­цессы штамповки имеют также важное значение при про­изводстве неметаллических изделий.


 

38. Обработка металлов резанием

 

Резание металлов – это обработка металлов снятием стружки для придания изделию заданной формы, размеров и обеспечения определенного технологического качества поверхности. Резание металлов осуществляется на металлорежущих станках или вручную с помощью металлорежущего инструмента.

На машиностроительных заводах до 40–60 % деталей машин получают в результате обработки заготовок на металлорежущих станках.

В процессе обработки исходная заготовка и режущий инструмент получают рабочее движение от механизмов металлорежущих станков и перемещаются относительно друг друга. Для осуществления обработки резанием необходимо сочетание двух видов движения: главного движения резания и движения подачи.

Наиболее распространенными видами обработки металлов резанием явл-ся: точение, сверление, фрезерование, строгание, шлифование.

Обработку металлов резанием производят на металлорежущих станках при помощи режущего инструмента – однолезвийного (резцы) и многолезвийного с двумя и более режущими кромками (сверла, зенкеры, развертки и др.). Инструменты, изготовленные из абразивных материалов (например, шлифовальные круги), обеспечивают высокую точность обработки и относятся к многолезвийным, так как они имеют множество острых режущих кромок.

Точение (токарная обработка) – обработка наружных и внутренних поверхностей тел вращения резанием – характеризуется вращательным движением заготовки и поступательным движением режущего инструмента – резца. Разновидности точения: обтачивание, растачивание, подрезание, разрезание. При точении заготовке сообщается главное движение резания, а инструменту – движение подачи.

Сверление – широко распространенный метод получения отверстий резанием. Главное движение при сверлении – вращательное, а движение подачи – поступательное. Оба движения при сверлении отверстий на сверлильных станках сообщаются инструменту – сверлу. При сверлении отверстие получается небольшой точности, с шероховатой поверхностью, поэтому предварительно просверленные отверстия обрабатывают зенкером (зенкерование) и разверткой (развертывание).

Фрезерование – процесс обработки изделий многолезвийным режущим инструментом – фрезой. По сравнению с процессом точения, при фрезеровании в работе одновременно участвует несколько лезвий, поэтому фрезерование является более производительным способом обработки, чем точение. Каждый зуб фрезы работает периодически, а корпус – ее большей частью.

Строгание – предназначенодля обработки длинных плоских поверхностей. Оно выполняется при прямолинейном возвратно-поступательном движении резца или заготовки – это движение является главным. После каждого двойного хода заготовка или резец перемещаются в поперечном направлении, совершая тем самым движение поперечной подачи.

Шлифование – процесс обработки заготовок резанием при помощи шлифовального круга-инструмента, имеющего форму тела вращения и состоящего из абразивных зерен и связующего их материала. При вращении круга наиболее выступающие из связки зерна, контактируя с заготовкой, снимают с ее поверхности тонкие стружки. Большинство из них, сгорая, образуют пучок искр. Обработка шлифованием в большинстве случаев является чистовой и отделочной операцией, обеспечивающей высокое качество обработанной поверхности и точность обработки. В некоторых случаях шлифование применяется для предварительной обработки заготовок, обдирки при снятии слоя до 6 мм.


 

39. Технология получения разъемных и не разъемных соединений

 

Разъёмные соединения.

При сборке изделий применяют разъемные соединения. Они допускают разборку без повреждения сопрягаемых деталей. К ним относятся: резьбовые, клиновые, штифтовые, шлицевые, шпоночные и профильные соединения, а также соединения с помощью упругих элементов.

Резьбовые соединения весьма распространены в машиностроении. Их выполняет, применяя крепежные детали (болты, винты, шурупы, гайки, резьбовые шпильки); иногда резьбу выполняют непосредственно на самой детали. Болтовое и винтовое соединение, особенного часто применяется при массовом и крупносерийном пр-ве, т.к. возможно эффективно использовать современные ср-ва механизации и автоматизации.

Штифтовые соединения применяют для точной фиксации сопрягаемых деталей между собой, а иногда и для передачи сдвигающих сил перпендикулярно их оси. Шпоночные и шлицевые соединения используют для передачи крутящего момента. Шлицевые соединения целесообразно применять в массовом пр-ве, они более надежны и с их помощью можно передавать большие крутящие моменты. Профильные соединения имеют преимущества по сравнению со шпиночным: они имеют хорошее центрирование деталей, не имеют острых углов и резких переходов сечения, что желательно при термообработке

 


Дата добавления: 2018-10-26; просмотров: 315; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!