Печеночный сосальщик. Систематическое положение, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики.



Печеночный сосальщик, или фасциола (Fasciola hepatica), – возбудитель фасциолеза.

Заболевание распространено повсеместно, чаще всего в странах с жарким и влажным климатом. Обитает паразит в желчных протоках, печени, желчном пузыре, иногда поджелудочной железе и других органах.

Размеры тела мариты – 3–5 см. Форма тела листовидная, передний конец клювообразно оттянут.

Необходимо обратить особое внимание на строение половых органов. Матка многолопастная и располагается розеткой сразу за брюшной присоской. За маткой лежит яичник. По бокам тела располагаются многочисленные желточники и ветви кишечника. Всю среднюю часть тела занимают сильно разветвленные семенники. Яйца крупные (135—80 мкм), желтовато-коричневые, овальные, на одном из полюсов имеется крышечка.

Жизненный цикл печеночного сосальщика типичен для этой группы паразитов. Фасциола развивается со сменой хозяев. Окончательным хозяином служат травоядные млекопитающие (крупный и мелкий рогатый скот, лошади, свиньи, кролики и др.), а также человек. Промежуточный хозяин – прудовик малый (Limnea truncatula).

Заражение основного хозяина происходит при поедании им травы с заливных лугов (для животных), немытой зелени и овощей (для человека). Обычно человек заражается при поедании щавеля и кресс-салата. На зеленых растениях располагаются адо-лескарии – инцистированные на листьях церкарии.

После попадания в кишечник окончательного хозяина личинка освобождается от оболочек, пробуравливает стенку кишки и проникает в кровеносную систему, оттуда – в ткань печени. С помощью присосок и шипиков фасциола разрушает клетки печени, что вызывает кровотечение и формирование цирроза в исходе заболевания. Печень увеличивается в размерах. Из печеночной ткани паразит может проникать в желчные ходы и вызывать их закупорку, появляется желтуха. Паразит достигает половой зрелости через 3–4 месяца после заражения и начинает откладывать яйца, находясь в желчных ходах.

 

Диагностика

Обнаружение яиц фасциолы в фекалиях больного. Яйца могут обнаруживаться и в фекалиях здорового человека при употреблении им в пищу печени больных фасциолезом животных (транзитных яиц). Поэтому при подозрении на заболевание перед обследованием необходимо исключить из рациона печень.

Профилактика

Тщательно мыть овощи и зелень, особенно в районах, эндемичных по фасциолезу, там, где огороды поливают водой из стоячих водоемов. Не использовать для питья нефильтрованную воду. Выявлять и лечить больных животных, проводить санитарную обработку пастбищ, смену пастбищ и выпасов гусей и уток для уничтожения промежуточного хозяина. Большое значение имеет санитарно-просветительская работа.


Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Волгоградский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

 

Кафедра биологии

Факультет лечебный

Дисциплина «Биология»

 

Экзаменационный билет №23

 

1. Мутационная изменчивость. Классификация мутаций. Мутации в половых и соматических клетках. Хромосомные и генные болезни.

2. Живое вещество биосферы. Количественная и качественная характеристики. Роль в природе планеты.

3. Лентец широкий. Систематическое положение, цикл развития, и пути заражения, обоснование методов лабораторной диагностики и профилактики.

М.П.                                                              Зав. кафедрой ___________

48 билет!!!

Изменчивость — общее свойство организмов приобретать новые признаки в процессе онтогенеза. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую

Мутация- скачкообразные и устойчивые изменения признака ,органа или свойства ,обусловленные изменениями наследственных структур. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов, а связаны с реорганизацией репродуктивных(воспроизводящих) структур клетки, с изменением ее генетического аппарата.

Основные положения мутационной теории разработаны Гуго де Фризом в 1901—1903 гг.:

Мутации возникают внезапно, скачкообразно.

поколение.

Могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в Одни и те же мутации могут возникать повторно.

Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Различают несколько классификаций мутаций.

Классификация 1.
Мутации бывают полезные, вредные и нейтральные. Полезные мутации: мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам). Вредные мутации: глухота, дальтонизм. Нейтральные мутации: мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).
Классификация 2. (в зависимости от места возникновения)
Мутации бывают соматические и генеративные ( в половых клетках)

 Соматические (чаще всего они не наследуются) мутации , возникающие в клетках тела и обусловливающие мозаичность организма, т. е. образование в нём отдельных участков тела, тканей или клеток с отличным от остальных набором хромосом или генов. возникают в соматических клетках и затрагивают лишь часть тела, наследуются только дочерними клетками, образовавшимися путем митоза . Они будут наследоваться следующим поколениям при вегетативном размножении. Генные С. м. проявляются относительно редко, т.к. в подавляющем большинстве случаев функция мутантного гена или выпавшего участка хромосомы компенсируется наличием нормального гомологичного гена или нормального участка в партнёре — гомологе мутантной хромосомы. Проявление некоторых С. м. подавляется соседством нормальной ткани. Наконец, С. м. может не проявиться в силу того, что в данной ткани соответствующий участок хромосомы неактивен.

 Генеративные (они наследуются, т.к. происходят в половых клетках . Генеративные мутации делятся на ядерные и внеядерные (или митохондриальные).
По характеру влияния мутаций на генотип:
Генные. Хромосомные. Геномные.

Генные мутации (точковые) не видны в микроскоп, связаны с изменением структуры гена (генные мутации изменяют последовательность нуклеотидов в молекуле ДНК и ген перестаёт работать). Эти мутации происходят в результате потери нуклеотида, вставки нуклеотида, замены одного нуклеотида другим. Эти мутации могут приводить к генным болезням: дальтонизм, гемофилия. Таким образом, генные мутации приводят к появлению новых признаков.
Хромосомные мутации (аберрации) характеризуются изменением структуры отдельных хромосом. При них последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу, что пагубно сказывается на нормальном развитии организма.

Различают внутрихромосомные, межхромосомные аберрации.

Внутрихромосомные аберрации — аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.

Делеция — утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.

Инверсия — встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

Дупликация — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР(врожд пороки развития), включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные аберрации — обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций:

реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентрическая хромосома вместо двух акроцентрических).

Геномные мутации приводят к изменению числа хромосом. Различают анеуплоидию и полиплоидию.

Полиплоидия – увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом.

автополиплоидия - кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида

аллополиплоидия - кратное увеличение количества хромосом у гибридных организмов. Возникает при межвидовой и межродовой гибридизации

Анеуплоидия некратное изменение числа хромосом.,изменяется часть генома
А) моносомия общая формула 2n-1 (45, Х0), болезнь – синдром Шерешевского-Тернера.
Б) трисомия общая формула 2n+1 (47, ХХХ или 47, ХХУ) болезнь – синдром Клайнфельтра.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мертворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена.

Причины генных патологий:

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни связано с первичным эффектом мутантного аллеля.

Основная схема генных болезней включает ряд звеньев:

мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм

Живое вещество биосферы. Количественная и качественная характеристика. Роль в природе планеты.

При любых трактовках понятия «биосфера» главным ее составляющим остается живое вещество. Данный тезис отнюдь не тривиален, хотя бы потому, что биомасса живого вещества составляет лишь около 0,0001% от массы биосферы, включающей в свой состав, как известно, все органическое вещество биогенного происхождения и косное вещество других сфер, занятых биосферой. Дело все в том, что роль живого вещества в биосфере уникальна.
Основной отличительной особенностью живого существа является не столько его способность размножаться и двигаться, сколько способ использования энергии. Только живые существа могут улавливать энергию Солнца, удерживать ее в виде сложных органических соединений (биомассы), передавать друг другу, трансформировать в механическую, электрическую, тепловую и другие виды.
К числу основных функций живого вещества относятся следующие: 1) энергетическая; 2) деструктивная; 3) концентрационная и 4) средообразующая. Суть первой из них состоит в поглощении солнечной энергии при фотосинтезе и передаче энергии по пищевой цепи. На собственные нужды организма в среднем расходуется 10—12% ассимилированной ими энергии. Остальная ее часть перераспределяется внутри экосистемы. Энергия частично рассеивается, а частично накапливается в биогенном веществе. После перехода в ископаемое состояние энергия консервируется в земной коре и служит энергетической базой для геологических процессов, обеспечивает энергетические потребности человечества.
Деструктивная функция живого вещества состоит в разложении, минерализации мертвого вещества, в химическом разложении горных пород, вовлечении образовавшихся минералов в биотический круговорот. Специальная группа организмов (редуцентов) деструкторов разлагает мертвое органическое вещество до простых неорганических соединений: углекислого газа, воды, сероводорода, метана, аммиака, которые затем вновь используются в начальном звене круговорота.
Концентрационная функция проявляется в избирательном накоплении в ходе жизнедеятельности атомов веществ, рассеянных в природе. При этом наиболее активными концентраторами многих элементов являются организмы.
Наконец, средообразующая функция живого вещества заключается в преобразовании физикохимических параметров среды (литосферы, гидросферы, атмосферы) в условия, благоприятные для существования организмов. С известной долей условности можно утверждать, что эта функция является результатом совместного действия всех рассмотренных выше функций живого вещества. В результате именно средообразующей функции образовался покров осадочных пород, был преобразован газовый состав атмосферы, изменился химический состав вод первичного океана, возник почвенный покров на поверхности суши.

     Живое вещество играет огромную роль в круговороте веществ в природе и осуществляет важнейшие биогеохимические функции:

-газовая функция – это поглощение растениями двуокиси углерода и выделении кислорода, в восстановлении азота, сероводорода и пр.,

-концентрационная функция – это поглощение и накопление живыми организмами углерода, азота, водорода, кислорода, фосфора, серы, йода, железа и прю элементов. На местах массовой гибели животных и растений обнаруживается отложения мела, известняка, нефти, угля и других полезных ископаемых;

-окислительно – восстановительная функция – это восстановление и окисление различных веществ в живых организмах.

Круговорот веществ в природе, осуществляется при участии всех организмов биосферы; между почвой, атмосферой, гидросферой и живыми организмами. Благодаря ему возможно длительное существование и развитие жизни при ограниченном запасе элементов в природе. Около 40 элементов вовлекаются в круговорот. Одновременно с круговоротом веществ идет и круговорот энергии, основным источником которого является Солнце.

Таки образом биосфера представляет собой сложную экологическую систему, стабильность которой обусловлена тем, что результаты деятельности продуцентов, консументов и редуцентов уравновешиваются.

Деятельность человека превратилась в мощный экологический фактор, нарушивший равновесие в биосфере. В результате деятельности человека (извлечение полезных ископаемых, использование синтетических продуктов, синтетических ядохимикатов, нетрадиционных источников энергии и пр.) нарушается биотический круговорот и он стал незамкнутым. За последние 300 лет существования человека биомасса земли уменьшилась почти на четверть.

№121. Лентец широкий. Систематическое положение, цикл развития, обоснование методов лабораторной диагностики, пути заражения, профилактика.

ЛЕНТЕЦ ШИРОКИЙ - Diphyllobothrium latum - возбудитель дифиллоботриоза - антропо-зооноза, природно-очагового заболевания.

Географическое распространение - в государствах Прибалтики и Скандинавского полуост­рова, в Японии, Швейцарии, Италии, Чили, Центральной Африке, а также в СНГ: бассейны рек Оби, Енисея, Лены, на Дальнем Востоке, новые очаги в бассейне Волги.

Локализация - ленточная форма паразитирует в тонком кишечнике человека и млекопитаю­щих, поедающих рыбу.

Морфологическая характеристика. Самый крупный из гельминтов человека. Длина до 10 м, отдельные экземпляры - до 20 м. Сколекс удлинен и имеет две продольные присасывательные ще­ли - ботрии. Проглоттиды имеют ширину в несколько раз больше длины. Их число от 3 до 4 тысяч. Половая клоака находится не сбоку членика, как у цепней, а на его вентральной стороне у перед­него края. Желточники расположены в боковых частях членика, вентрально от семенников. Зрелые членики не отрываются от стробилы, в отличие от цепней, поскольку матка имеет собственное от­верстие. Миллион яиц ежедневно выделяются с фекалиями больного человека или другого окон­чательного хозяина во внешнюю среду. Матка трубковидная и собрана в центре зрелого членика петлями в розетку. Благодаря такому строению матки в зрелых члениках не происходит атрофии органов половой системы в такой степени, как у тениид.  

Цикл развития.

 Биогельминт. Окончательные хозяева - человек и рыбоядные млекопитающие (песец, собака, кошка, медведь, лисица и др.). Промежуточные хозяева: первый - пресноводные рачки рода Cyclops или Diaptomus, второй - пресноводные рыбы (щука, судак, налим, лососевые и др.)

Инвазионная форма. Для человека и других окончательных хозяев - плероцер-коид в теле рыбы. В кишечнике плероцер-коид присасывается ботриями к слизис­той и превращается в половозрелую особь.

Патогенное действие. Токсическое и механическое воздействия гельминта вызывают схваткообразные боли в животе, развиваются диарея или запор, возможна кишечная непроходимость. У больного появляются слабость, рвота, потеря массы тела, нередко развивается анемия, вызванная способностью гельминта адсорбировать витамин В12.

Источник заражения. Для человека - зараженная плероцеркоидами рыба. Очаги заболевания поддерживаются плотоядными животны­ми, циклопами, рыбой.

Диагностика. Обнаружение яиц в фекалиях. Яйца желтоватого цвета 0,068-0,071 мм в длину и 0,045мм в ширину; на одном полюсе имеется крышечка.

Профилактика: а) общественная - санитарно-просветительная работа; выявление и дегель­минтизация больных; охрана воды и почвы от загрязнения фекалиями; введение специальных ре­жимов, обезвреживающих рыбу перед продажей; б) личная - тщательная кулинарная обработка рыбы.


Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Волгоградский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

 

Кафедра биологии

Факультет лечебный

Дисциплина «Биология»

 

Экзаменационный билет №24

 

1. Хромосомные мутации: делеции, дупликации, инверсии, транслокации. Геномные мутации: полиплоидия, гетероплоидия, их механизмы и значение.

2. Постнатальный онтогенез и его периоды. Роль эндокринных желез: щитовидной, гипофиза, половых желез в регуляции жизнедеятельности организма в постнатальном периоде.

3. Тип Простейшие. Классификация. Характерные черты организации. Значение для медицины.

М.П.                                                              Зав. кафедрой ___________

49 билет!!!!

Мутация- скачкообразные и устойчивые изменения признака ,органа или свойства ,обусловленные изменениями наследственных структур. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов, а связаны с реорганизацией репродуктивных(воспроизводящих) структур клетки, с изменением ее генетического аппарата.

По характеру влияния мутаций на генотип:
Генные. Хромосомные. Геномные.

Хромосомные мутации  (аберрации) характеризуются изменением структуры отдельных хромосом. При них последовательность нуклеотидов в генах обычно не меняется, но изменение числа или положения генов при аберрациях может привести к генетическому дисбалансу, что пагубно сказывается на нормальном развитии организма.

Различают внутрихромосомные, межхромосомные и изохромосомные аберрации.

Внутрихромосомные аберрации — аберрации в пределах одной хромосомы. К ним относятся делеции, инверсии и дупликации.

Делеция — утрата одного из участков хромосомы (внутреннего или терминального), что может стать причиной нарушения эмбриогенеза и формирования множественных аномалий развития (например, делеция в регионе короткого плеча хромосомы 5, обозначаемая как 5р-, приводит к недоразвитию гортани, ВПР сердца, отставанию умственного развития). Этот симптомокомплекс обозначен как синдром кошачьего крика, поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье.

Инверсия — встраивание фрагмента хромосомы на прежнее место после поворота на 180°. В результате нарушается порядок расположения генов.

Дупликация — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по короткому плечу хромосомы 9 приводит к появлению множественных ВПР(врожд пороки развития), включая микроцефалию, задержку физического, психического и интеллектуального развития).

Межхромосомные аберрации — обмен фрагментами между негомологичными хромосомами. Они получили название транслокаций. Различают три варианта транслокаций:

реципрокные (обмен фрагментами двух хромосом), нереципрокные (перенос фрагмента одной хромосомы на другую), робертсоновские (соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч, в результате образуется одна метацентри-ческая хромосома вместо двух акроцентрических).

Изохромосомные аберрации — образование одинаковых, но зеркальных фрагментов двух разных хромосом, содержащих одни и те же наборы генов. Это происходит в результате поперечного разрыва хроматид через центромеры (отсюда другое название — центрическое соединение). Геномные мутации. Виды геномных мутаций.

Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия(гетероплоидия)

ПОЛИПЛОИДИЯ, увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации.

Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному.

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Гетероплоид и я - изменение генома (набора хромосом), связанное с добавлением к набору одной или более хромосом или с их утратой; то же, что анеуплоидия.

некратное изменение числа хромосом.,изменяется часть генома
А) моносомия общая формула 2n-1 (45, Х0). Наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по хромосоме X — приводит к развитию синдрома Шерешевского—Тернера (45,Х0).

Б) трисомия общая формула 2n+1 (47, ХХХ или 47, ХХУ) . Наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау).

Механизмы возникновения:

 нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

Вопрос №58:Постнатальный онтогенез и его периоды.Роль эндокринных желез(щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма в постнатальном периоде.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й — 10-й день — новорожденные; 10-й день — 1 год — грудной возраст; 1—3 года — раннее детство; 4—7 лет — первое детство; 8—12 лет — второе детство; 13—16 лет — подростковый период; 17—21 год — юношеский возраст; 22—35 лет — первый зрелый возраст; 36—60 лет — второй зрелый возраст; 61—74 года— пожилой возраст; с 75 лет — старческий возраст, после 90 лет — долгожители. Завершается онтогенез естественной смертью.

Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде очень велика. Важен гормон соматропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы — тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия.


Дата добавления: 2018-09-20; просмотров: 717; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!