Вплив зовнішніх факторів на діелектричну проникність



Nbsp;  

Електротехнічні матеріали. Діелектрики

 


Вступ

Діелектрики належать до найбільш розповсюджених матеріалів, які застосовуються в електротехнічній промисловості. Якщо раніше ці матеріали використовували тільки як електричну ізоляцію, то в даний час, завдяки досягненням науки, вони одержали поширення в різних галузях електротехніки, радіоелектроніки й технічної кібернетики. У зв'язку з цим, раціональний вибір того чи іншого діелектричного матеріалу можливий тільки на підставі знань про їхні характеристики і вплив на них різних факторів. Це дозволить забезпечити надійну і стабільну роботу виробів, у яких застосовуються діелектричні матеріали.

П оляризація діелектрик електропровідність діелектричний


Поляризація діелектриків

 

Основною властивістю діелектриків є здатність до поляризації під дією прикладеної напруги. Процес поляризації являє собою зміну розташування в просторі часток діелектрика, що мають електричні заряди. Елементарні диполі, що представляють зв'язані й невіддільні один від одного молекули діелектрика, позитивні й негативні заряди яких зміщені один відносно другого, характери-зуються електричним моментом p:

 

p = q l, (1.1)

 

де q – заряд диполя; l - відстань між зарядами.

Під дію електричного поля диполі починають орієнтуватися в просторі і створюють сумарний момент. Такий момент, віднесений до одиниці об'єму діелектрика, називається поляризованістю діелектрика P

 

P = , (1.2)

 

де V – об’єм діелектрика

Залежність поляризованості P від напруженості електричного поля Е в діелектрику для більшості діелектриків має лінійний характер. При малих значеннях напруженості поля для ізотропних діелектриків можна записати

 

 , (1.3)

 

де  - діелектрична сприйнятливість діелектрика. Вона зв'язана з відносною діелектричною проникністю діелектрика співвідношенням ;

 - абсолютна діелектрична сприйнятливість чи питома поляризованість.

Особливу групу складають сегнетоелектрики, електрети, а також деякі іонні кристали, для яких зв'язок між Р і Е нелінійний і залежить від попереднього значення Е.

Зсув зарядів у діелектрику приводить до утворення внутрішнього поля, спрямованого протилежно зовнішньому, що може бути представлено вектором електричного зсуву D.

 

 , (1.4)

 

де – електрична постійна, рівна8,854 10-12 Ф/м.

Перший доданок у цьому виразі пропорційний розподіленій щільності заряду, утвореного у вакуумі, а другий залежить від ступеня поляризації діелектрика. Відповідно до теореми Гаусса для поля вектора D потік цього вектора крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі зарядів, охоплюваних цією поверхнею

 

внутр . (1.5)

 

Слід зазначити, що вектор D являє собою суму двох зовсім різних величин, у зв'язку з чим він не має глибокого фізичного змісту і являє собою допоміжний вектор. Однак, у багатьох випадках вектор D значно спрощує вивчення поля в діелектриках.

Наведені співвідношення (1.4) і (1.5) можуть бути використані як для ізотропних, так і для анізотропних діелектриків. Розмірність вектора D та сама, що і вектора Р – Кл/м2.

Використовуючи вираз (1.3) для ізотропного діелектрика, залежність вектора D від вектора Е можна подати у виді


чи  . (1.6)

 

Кожний діелектрик з нанесеними на нього електродами, включений в електричну мережу, можна розглядати як конденсатор певної ємності. Заряд такого конденсатора Q дорівнює

 

Q = C U, (1.7)

 

де С – ємність конденсатора,

U – прикладена напруга.

При заданому значенні прикладеної напруги величина заряду Q складається із заряду Qо , який був би присутній на електродах, якщо їх розділяв вакуум, і заряду Qд , що обумовлений поляризацією діелектрика, котрий фактично поділяє електроди:

 

Q = Qо + Qд (1.8)

 

Здатність діелектрика утворювати ємність можна оцінити за допомогою параметра відносної діелектричної проникності , що представляє відношення заряду Q, отриманого при деякій напрузі на конденсаторі, що містить даний діелектрик, до заряду Qо, який можна було б одержати на конденсаторі тих же геометричних розмірів і при тій же напрузі, якби між електродами знаходився вакуум:

 

 = . (1.9)

 

З наведеної формули видно, що значення  будь-якого діелектрика більше одиниці і тільки в тому випадку, коли між електродами знаходиться вакуум


= 1.

 

Фактично параметр  показує, у скільки разів зміниться ємність конденсатора при заміні вакууму між його пластинами досліджуваним діелектриком:

 

С = Со . (1.10)

 

Крім параметра часто використовують параметр абсолютної діелектричної проникності:

 

 , (1.11)

 

Відносна діелектрична проникність використовується в багатьох рівняннях, що характеризують фізичні процеси, які протікають у діелектриках. Так, відповідно до закону Кулона сила взаємодії F двох точечних зарядів q1 і q2 , розташованих в неорганічному середовищі з відносною діелектричною проникністю на відстані h один від другого, дорівнює

 

F =  . (1.12)

 

Значення діелектричної проникності важливо знати і для розрахунку напруженості електричного поля в багатошарових діелектриках. Наприклад, для випадку двошарового конденсатора (рис.1.1) напруженість електричного поля в шарах дорівнює


U


E1 E2

εr1 εr2

     
 


h1 h2

Рис.1.1 – Двошаровий конденсатор

 

 . (1.13)

 

Напруга на шарах

 

 . (1.14)

 

З наведених формул виходить, що при меншій діелектричній проникності шару напруга на ньому збільшується. В особливо невигідному положенні виявляються повітряні прошарки всередині ізоляції. У зв'язку з малим значенням εr і низкою електричною міцністю в таких прошарках легко виникають часткові розряди.

У тому випадку, коли діелектрик представляє суміш хімічно невзаємодіючих один з одним компонентів з різними діелектричними проникностями, загальну діелектричну проникність можна визначити приблизно на підставі рівняння Ліхтенеккера

 

, (1.15)

 

де  - відповідно відносні діелектричні проникності суміші й окремих компонентів; - об'ємні концентрації компонентів, ;  - величина, що характеризує розподіл компонентів і приймає значення від +1 до –1.

При паралельному включенні компонентів  і вираз (1.15) має вигляд

 

 .

 

При послідовному включенні компонентів, коли ,

 

 

Якщо компоненти розподілені хаотично, то

 

 . (1.16)

 

Електрична ємність конденсатора, крім геометричних розмірів і конфігу-рації конденсатора, залежить також від відносної діелектричної проникності діелектрика, що в ньому використовується.

Ємність плоского конденсатора визначається за формулою

 

 (1.17)

 

де  - площа електрода;  - відстань між електродами.

Для циліндричного конденсатора (рис.1.2) запишемо

 

 ,  (1.18)


 

якщо , то  . (1.19)

Рис.1.2 – Циліндричний конденсатор

 

Для ізоляції кабелів, систем рівнобіжних проводів і т.п. вводиться поняття питомої (погонної) ємності, тобто ємності, віднесеної до одиниці довжини К= С/L . Так, для одножильного кабеля питома ємність (нФ/м) між жилою діаметром d1 і металевою оболонкою чи екраном з діаметром d2 дорівнює

 

К = , (1.20)

або при  К  . (1.21)

 

Для двох рівнобіжних круглих проводів діаметром d кожний при відстані між їхніми осями h, за умови d<<h і без урахування впливу землі питома ємність визначається за формулою

 

 . (1.22)

 

За цією ж формулою можна визначати питому ємність між проводом і землею.

Величина відносної діелектричної проникності для різних діелектриків змінюється в широких межах. Значення  газів близьке до одиниці. Так, для повітря = 1,00058. Більшість практично застосовуваних рідких і твердих діелектриків мають значення  порядку декількох одиниць, менше зустрічаються діелектрики, в яких складає кілька десятків і дуже рідко, коли ця величина перевищує значення сто одиниць. У сегнетоелектриках вона може досягати значення кілька десятків тисяч.

 

1.1 Основні види поляризації діелектриків

 

Велика кількість різних механізмів поляризації діелектриків, що мають місце в діелектриках, можна розділити на два основних види:

- поляризації, що протікають під впливом електричного поля практично миттєво і не супроводжуються розсіюванням енергії, тобто без виділення тепла;

- поляризації, що протікають уповільнено і які супроводжуються розсіюванням енергії в діелектрику, тобто нагріванням. Такий вид поляризації називається релаксаційною.

До першого виду відносяться електронна й іонна поляризації. Інші механізми поляризації слід віднести до релаксаційних.

Електронна поляризація - це зсув орбіт електронів щодо атомних ядер. Даний механізм поляризації спостерігається у всіх діелектриків незалежно від наявності в них інших видів поляризації. При переміщенні діелектрика в зовнішнє електричне поле електронна поляризація встановлюється за час порядку 10-15с. При підвищенні температури діелектрика у зв'язку з тепловим розширенням речовини і зменшенням числа часток в одиниці об'єму електронна поляризація зменшується. Однак слід зазначити, що температура не впливає на зсув і деформацію електронних орбіт атомів і іонів.

Іонна поляризація - це зсув один щодо одного іонів, що утворюють молекулу. Ця поляризація протікає за час порядку 10-13с. При підвищенні температури іонна поляризація посилюється. Причиною цього є ослаблення пружних сил, що діють між іонами внаслідок збільшення відстані між ними при тепловому розширенні.

Діпольна поляризація - це орієнтація діпольних молекул у полярних діелектриках під дією електричного поля. Вона належить до числа релаксаційних поляризацій. Діелектрики, що містять електричні діполі, здатні орієнтуватися в зовнішньому електричному полі, називаються полярними. Очевидно, що дана поляризація буде виявлятися тим інтенсивніше, чим більше діпольний момент даного матеріалу. Залежно від величини електричних моментів діполів, в'язкості середовища, а також інтенсивності теплового руху молекул час установлення даної поляризації складає 10-2–10-10с.

Діпольна поляризація властива полярним газам і рідинам. У цих діелектриках у зв'язку з незначною щільністю і невеликими розмірами молекул при впливі електричного поля відбувається поворот самих молекул. У твердих діелектриках також може спостерігатися діпольна поляризація. Але, на відміну від газоподібних і рідких діелектриків, поворот молекул тут неможливий, а відбувається орієнтація окремих груп атомів без порушення їхнього зв'язку з молекулами.

Зі збільшенням температури молекулярні сили слабшають, в'язкість речовини зменшується, тому спочатку діпольна поляризація посилюється. Однак у той же час зростає енергія теплового руху молекул, що зменшує вплив електричного поля, і коли тепловий рух стає інтенсивним, діпольна поляризація зменшується. Проміжок часу, протягом якого впорядкованість орієнтованих полем діполів після його зняття зменшується внаслідок теплового руху в е раз у порівнянні з початковим значенням, називається часом релаксації.

Іонно-релаксаційна поляризація спостерігається в іонних діелектриках з нещільним упакуванням іонів. Даний вид поляризації характерний для неорганічного скла, а також для деяких неорганічних кристалічних речовин. Слабко зв'язані іони під дією зовнішнього електричного поля крім хаотичних теплових переміщень одержують додаткові переміщення в напрямку поля. Після зняття електричного поля орієнтація іонів поступово слабшає за експонентним законом. При підвищенні температури іонно-релаксаційна поляризація посилюється.

Електронно-релаксаційна поляризація виникає в діелектриках за рахунок збуджених тепловою енергією надлишкових "дефектних" електронів чи дірок. Даний вид поляризації характерний для діелектриків з електронною електропровідністю і значним внутрішнім електричним полем. Діелектрики з електронно-релаксаційною поляризацією мають високе значення відносної діелектричної проникності. У кривої залежності = f(T) спостерігається максимум навіть при негативних температурах. При збільшенні частоти дана поляризація, як правило, зменшується.

Міграційна поляризаціяхарактерна для неоднорідних діелектриків і обумовлена перерозподілом вільних зарядів у його об'ємі. Даний вид поляризації зв'язаний з наявністю в діелектрику шарів з різною діелектричною проникністю і провідністю, а також різних провідних і напівпровідних включень. На межі розподілу між шарами в шаруватих матеріалах і в при електродних шарах може відбуватися нагромадження зарядів повільно рухаючих іонів, що створює ефект міжшарової поляризації. У результаті цього в такому діелектрику при внесенні його в електричне поле утворюються поляризовані області. При міграційній поляризації спостерігається значне розсіювання електричної енергії.

Мимовільна чи спонтанна поляризаціяспостерігається в сегнетоелектриках. У цих речовинах існують окремі області, що мають електричний момент навіть при відсутності зовнішнього електричного поля. Орієнтація електричних моментів у доменах різна. При внесенні даного діелектрика в електричне поле відбувається орієнтація електричних моментів у напрямку поля, в результаті чого спостерігається сильна поляризація. На відміну від інших видів поляризації, при деякому значенні напруженості зовнішнього поля настає насичення і подальше збільшення напруженості не приводить до посилення поляризації.Діелектрична поляризація в сегнетоелектриках нелінійно залежить від величини напруженості електричного поля. При деякій температурі спостерігається характерний максимум на кривой залежності = f (T).

1.2 Класифікація діелектриків за видами поляризації

 

Усі діелектрики залежно від впливу напруженості електричного поля на величину відносної діелектричної проникності розділяються на лінійні й нелінійні.

У лінійних діелектриках з малими втратами енергії заряд конденсатора змінюється пропорційно величині прикладеної напруги. Для нелінійних діелектриків ця залежність має вид петлі гістерезіса.

Ємність конденсатора з лінійним діелектриком залежить тільки від його геометричних розмірів і не міняється при зміні прикладеної різниці потенціалів. У конденсаторі з нелінійним діелектриком ємність буде змінюватися при зміні прикладеної різниці потенціалів, тому що залежність  має нелінійний характер. У зв'язку з цим нелінійні діелектрики називають активними, чи керованими діелектриками.

Лінійні діелектрики можна розділити на кілька груп. Неполярними діелектриками є гази, рідини й тверді речовини в кристалічному й аморфному стані, в яких спостерігається в основному тільки електронна поляризація. Такими діелектриками є водень, парафін, поліетилен та ін.

Полярні діелектрики – це органічні рідкі, напіврідкі й тверді речовини, в яких одночасно існують електронна і діпольно - релаксаційна поляризації. До них відносяться кремнійорганічні з'єднання, феноло - формальдегідні смоли, епоксидні компаунди, капрон та ін.

Іонні з'єднання складають тверді неорганічні діелектрики з електронною, іонною, іонно - релаксаційною та електронно - релаксаційною поляризаціями. З огляду на значне розходження їхніх електричних характеристик дану групу доцільно розбити на дві підгрупи: 1) діелектрики з іонною й електронною поляризаціями; 2) діелектрики з електронною, іонною і релаксаційними поля-ризаціями.

До першої підгрупи відносяться кристалічні речовини з щільним упакуванням іонів, наприклад, слюда, кварц, корунд ( ) та ін. До другої підгрупи належать неорганічне скло, багато видів кераміки, кристалічні діелектрики з нещільним упакуванням часток у решітках.

Вплив зовнішніх факторів на діелектричну проникність

 

Одним з таких факторів є частота прикладеної напруги. У неполярних діелектриках поляризація встигає установитися за час значно менший, ніж час напівперіоду прикладеної напруги. У зв'язку з цим у цих діелектриках  від частоти практично не залежить.

У полярних діелектриках при підвищенні частоти відносна діелектрична проникність спочатку також залишається незмінною, але починаючи з деякої критичної частоти, коли поляризація вже не встигає установитися за один напівперіод, зменшується (рис 1.3) .

 

         
           
          f

102 103 104 105 106 107 108 Гц

Рис.1.3 – Залежність діелектричної проникності від частоти для полярної рідини

 

Значний вплив на величину відносної діелектричної проникності в полярних діелектриках оказує температура. При низьких температурах орієнтація дипольних молекул утруднена, тому  практично не змінюється. Підвищення температури супроводжується збільшенням , оскільки при цьому полегшується орієнтація дипольних молекул. Однак при подальшому збільшенні температури внаслідок хаотичних теплових коливань молекул ступінь упорядкованості орієнтації молекул знижується , тому , пройшовши через максимум, зменшується (рис 1.4).

У неполярних діелектриках слабко залежить від температури. Незначне зменшення  пояснюється тепловим розширенням речовини і відповідно зменшенням кількості молекул, які поляризуються в одиницю об'єму. Різка зміна для парафіну відповідає температурі плавлення даної речовини і стрибкоподібній зміні його щільності (рис.1.5).

 

Рис.1.4 - Залежність  Рис.1.5- Залежність  для нітробензолу для парафіну.

 

Діелектрики іонної будови характеризуються, як правило, зростаючою лінійною залежністю = f (T) (рис 1.6). Однак у деяких іонних кристалах, наприклад, Ti2 , CaTi3 та ін.  при збільшенні температури зменшується.

 

Рис.1.6 – Залежність для безлужного скла

 

Температурна залежність діелектричної проникності від температури може бути представлена виразом


ТК  =  (1.23)

 

Тут ТК  – температурний коефіцієнт відносної діелектричної проникності. Даний коефіцієнт дозволяє визначити відносну зміну діелектричної проникності при зміні температури на 1оС або 1оК.

Значення ТК  можна визначити і графічно (рис1.7). Для цього при визначеній температурі в цікавлячій нас точці (наприклад, А) проводять дотичну до кривої і будують на цій дотичній, як на гіпотенузі, прямокутний трикутник довільних розмірів. Відношення його катетів з урахуванням масштабів іТ , поділене на значення  в точці А дорівнює ТК  :

 

ТК  =  (1.24)

εr

 


∆εr А

     
 

 


Т1

 


ΔТ Т0С

Рис.1.7 – Графічне визначення ТК

 

Таким чином, можна визначити ТК  при будь-якому механізмі поляризації і для залежності =f (T) будь-якої форми.

Залежність від тиску. При підвищенні гідростатичного тиску значення дещо зростає, тому що при цьому збільшується густина речовини і, отже, кількість молекул, які поляризуються в одиниці об'єму. Для неполярних газів лінійно зростає з підвищенням тиску.

Тиск також впливає на діелектричну проникність рідин і твердих тіл. Так, води при збільшенні тиску монотонно зростає (рис.1.8)

 

Рис.1.8 – Залежність  для води.

 

У ряді випадків у полярних рідинах в залежності =f(p) може спостерігатися максимум, наприклад, у гліцерині, касторовій олії і т.д. На рис.1.9 показана залежність =f(p) для нітробензолу. При підвищенні тиску у даній речовині спостерігається фазовий перехід з рідкого стану в твердий, що приводить до стрибкоподібної зміни ,.

 

 

Рис.1.9 – Залежність  для нітробензолу.

 

Крім гідростатичного тиску на впливає і зміна густини речовини при зміні технології його виготовлення. На рис.1.10 показана залежність = f(Д) для політетрафторетілену (фторлон-4).

 


Рис.1.10 – Залежність = f(Д) для політетрафторетілену (фторлон-4).

 

Залежність від тиску можна представити виразом

 

БК  = , (1.25)

де БК  - баричний коефіцієнт відносної діелектричної проникності.

Залежність від вологості. У гігроскопичних діелектриках помітно зростає при збільшенні вологості (рис.1.11 ). Однак, при цьому погіршуються такі важливі показники діелектриків як питомий опір, електрична міцність, кут діелектричних втрат.

 

Рис.1.11 - Залежність відносної діелектричної проникності деревини від вологості

Залежність  від напруги. Для більшості діелектриків, у яких спостерігається лінійна залежність величини електричного зсуву від прикладеної напруги, відносна діелектрична проникність практично не залежить від напруги. Але в полярних рідинах і газах може спостерігатися так званий "ефект насичення". Він може бути як позитивним, так і негативним. У тому випадку, коли збільшення напруженості електричного поля приводить до зменшення відносної діелектричної проникності, ефект називається негативним і позитивним - при збільшенні .

Помітний вплив на величину робить прикладена напруга у сегне-тоелектриках.

Література: [1, с.16 – 30]

Контрольні запитання

1. Перелічіть основні механізми поляризації, вкажіть їхні головні особливості. Наведіть приклади діелектриків з різними механізмами поляризації.

2. Поясніть залежність діелектричної проникності твердих діелектриків від температури і частоти.

3. Наведіть приклади залежності діелектричної проникності рідких діелектриків від зовнішніх факторів.

4. Викладіть метод визначення температурного коефіцієнта діелектричної проникності, наведіть приклади його розрахунку.

5. Поясніть розходження між полярними і неполярними діелектриками.

6. Викладіть методи визначення відносної діелектричної проникності суміші, що містить два чи більше діелектриків, які не вступають один з одним у хімічні сполуки.

7. Наведіть класифікацію діелектриків за видами поляризації.

 

 


Дата добавления: 2018-09-23; просмотров: 589; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!