Прочие факторы, влияющие на выбор газоанализаторов



 

6.3.1 Устойчивость к электромагнитным воздействиям

 

Некоторые типы газоанализаторов горючих газов чувствительны к внешним радиочастотным помехам, которые вызывают сбои в работе, уход нулевых показаний и ложное срабатывание сигнализации. Для предотвращения подобных проблем следует выбирать газоанализаторы, должным образом защищенные от электромагнитных помех (см., например, EN 61326-1:2006 "Электрооборудование для измерения, контроля и лабораторного использования - ЕМС требования - Часть 1. Общие требования").

 

6.3.2 Использование газоанализаторов во взрывоопасных зонах

 

Газоаналитическое оборудование во взрывозащищенном исполнении обычно применяют во взрывоопасных зонах (классов 0, 1, 2). Газоанализаторы с маркировкой взрывозащиты "Ex ia" могут быть использованы в зонах всех трех классов. Газоанализаторы с маркировкой взрывозащиты "Ex d" могут быть использованы в зонах классов 1 и 2. Эти два вида взрывозащиты также применяют к подгруппам оборудования (IIA, IIB или IIC) и соответствующим температурным классам (от Т1 до Т6 в зависимости от контролируемых веществ). Эти характеристики приведены в форме таблиц в IEC 60079-20-1. Однако все вышесказанное применимо только к определению газа в обычном воздухе, объемная доля кислорода в котором составляет примерно 21%, или в воздухе, содержание кислорода в котором несколько снижено. Если воздух значительно обогащен кислородом, такое оборудование применять нельзя.

 

Для получения сведений о мерах безопасности при эксплуатации и предполагаемом изменении чувствительности газоанализаторов в условиях недостатка или избытка кислорода в окружающей и контролируемой средах необходимо обратиться к руководству по эксплуатации или получить рекомендации изготовителя газоанализаторов.

 

Характеристики газовых утечек

Природа утечки

 

7.1.1 Общие положения

 

Размер утечки и (или) скорость накопления взрывоопасной смеси в основном определяются описанными ниже физическими и химическими свойствами, некоторые из них являются характеристиками горючего вещества, другие характеризуют технологический процесс или место эксплуатации. Далее для простоты изложения принято допущение, что при изменении одного параметра все остальные параметры не изменяются.

 

7.1.2 Интенсивность утечки газа или пара

 

Чем выше интенсивность утечки, тем больше размер взрывоопасной зоны и скорость накопления взрывоопасной смеси.

 

Интенсивность утечки определяется следующими свойствами источника утечки:

 

a) геометрия источника утечки.

 

Под геометрией имеют в виду физические характеристики источника утечки (например, площадь открытой поверхности жидкости, неплотное фланцевое соединение и др.);

 

b) скорость истечения горючего вещества.

 

Для конкретного источника утечки интенсивность утечки возрастает с увеличением скорости истечения горючего вещества. Если горючее вещество находится внутри технологического оборудования, то скорость истечения зависит от давления рабочего процесса и геометрии источника утечки.

 

Значительная интенсивность утечки в сочетании с высокой скоростью истечения приводит к возникновению конусообразной струи, которая будет воздействовать на поведение вытекающего газа, по крайней мере, в непосредственной близости от источника.

 

Газ, поступающий из источника утечки с высокой скоростью (например, утечка из находящейся под давлением трубы или емкости), вначале будет иметь вид конусообразной струи, направленной от источника утечки. По мере того как расстояние от источника утечки увеличивается, кинетическая энергия струи уменьшается, пока в итоге газ не рассеивается под влиянием ветра, благодаря разнице в плотности с воздухом, и в меньшей степени из-за диффузии;

 

c) содержание горючего вещества.

 

На интенсивность утечки влияет содержание горючего газа или пара в вытекающей смеси;

 

d) испаряемость горючей жидкости.

 

Испаряемость зависит от давления насыщенных паров и теплоты парообразования горючей жидкости. Если давление насыщенного пара неизвестно, то следует руководствоваться температурами кипения и вспышки.

 

Взрывоопасная смесь не может существовать, если температура вспышки значительно превышает максимальную рабочую температуру горючей жидкости. Чем ниже температура вспышки, тем больше размеры взрывоопасной зоны и скорость накопления взрывоопасной смеси.

 

Не все жидкости (например, некоторые галогенсодержащие углеводороды) характеризуются таким параметром, как температура вспышки, хотя и могут образовать взрывоопасную газовую смесь. В подобных случаях следует сравнивать установившееся значение температуры жидкости, соответствующее концентрации насыщенного пара при нижнем концентрационном пределе воспламенения, с максимальной температурой жидкости.

 

Жидкости следует принимать в расчет, когда их температура выше , К, где - температура вспышки, а - запас безопасности. Этот запас безопасности примерно равен 5 К для чистых химических веществ, но он должен быть повышен до 15 К для смесей.

 

Примечание - Если горючее вещество поступает в воздух таким образом, что образуется туман (например, путем распыления), то образование взрывоопасной смеси возможно при температуре, которая ниже температуры вспышки;

 

e) температура жидкости.

 

Давление насыщенного пара возрастает с увеличением температуры, увеличивая интенсивность утечки вследствие испарения.

 

Температура жидкости после утечки может возрасти, например, за счет нагретой поверхности оборудования, в контакте с которой она находится, или высокой температуры окружающего воздуха.

 

7.1.3 Пределы распространения пламени (воспламенения)

 

Чем ниже значение НКПР горючего газа или пара в воздухе, тем больше размеры взрывоопасной зоны и скорость накопления взрывоопасной смеси. При одинаковых интенсивностях утечек газы с более низкими значениями НКПР создадут взрывоопасную концентрацию быстрее, чем газы с более высокими значениями НКПР.

 

Как НКПР, так и ВКПР зависят от температуры окружающей среды и атмосферного давления, но в пределах обычных изменений это влияние незначительно. Полезную информацию по этому вопросу можно найти в IEC 60079-20.

 

7.1.4 Вентиляция

 

При повышении уровня вентиляции размеры взрывоопасной зоны и скорость накопления взрывоопасной смеси уменьшаются. Объекты, препятствующие проветриванию, могут увеличить размеры взрывоопасной зоны и скорость накопления взрывоопасной смеси. Такие препятствия, как стены или потолки, могут ограничить размеры взрывоопасной зоны и скорость накопления взрывоопасной смеси.

 

7.1.5 Относительная плотность газа или пара при утечке

 

Поведение газа, который вытекает с незначительной начальной скоростью (например, пар, выделяющийся при разливе жидкости), подчиняется закону плавучести и зависит от относительной плотности газа по отношению к воздуху.

 

Если газ значительно легче воздуха, то он будет перемещаться вверх. Если газ или пар значительно тяжелее, он будет скапливаться на уровне земли. Протяженность зоны в горизонтальном направлении на уровне земли и скорость накопления взрывоопасной смеси у земли будут возрастать с увеличением относительной плотности, а протяженность зоны в вертикальном направлении над источником утечки и скорость накопления взрывоопасной смеси над источником утечки будут возрастать с уменьшением относительной плотности.

 

Примечания

 

1 На практике газы и пары, относительная плотность которых ниже 0,8, считаются легче воздуха (например, метан, водород или аммиак). Если же относительная плотность газа или пара превышает 1,2, то считается, что они тяжелее воздуха. Если относительная плотность газа или пара находится в промежутке между этими значениями, то следует учитывать оба варианта.

 

2 Плотность смеси тяжелых и легких газов имеет среднее значение, и, однажды смешавшись, они более не разделятся, а могут только разбавляться воздухом.

 

7.1.6 Температура и (или) давление

 

Если газ или пар до утечки имел температуру и (или) давление, значительно отличающиеся от температуры окружающей среды и атмосферного давления, то интенсивность утечки и, следовательно, ее поведение, по крайней мере, в непосредственной близости от источника, будут иными.

 

Газ, вытекающий под высоким давлением в атмосферу, может сильно охлаждаться вследствие адиабатического расширения. Подобным же образом утечка сжиженного газа (например, сжиженного нефтяного газа или аммиака) приведет к его охлаждению до точки кипения, которая значительно ниже 0 °С.

 

Любой вызванный разницей температур поток (например, конвективные потоки от нагретых или холодных поверхностей зданий или технологического оборудования), особенно если он близок к источнику утечки, может повлиять на распространение газовоздушной смеси и ее распределение по высоте.

 

7.1.7 Дополнительные факторы, которые необходимо учитывать

 

Необходимо также принимать во внимание такие факторы, как климатические условия и топография местности.

 

При значительных движениях наружного воздуха или если утечка происходит внутри помещений или сооружений распространение газа будет отличаться от того, как указано выше (см. 7.2, 7.3).

 

7.1.8 Наружные площадки и открытые сооружения

 

На наружных площадках и в открытых сооружениях на рассеивание газа после утечки могут влиять скорость и направление ветра. На наружных площадках распространение газа в горизонтальном направлении против ветра замедляется, а в направлении по ветру ускоряется. Этот эффект тем сильнее, чем выше скорость ветра. Более сложные траектории воздушных потоков будут наблюдаться вокруг зданий и сооружений. В таких случаях направление ветра оказывает большее влияние, так как необходимо учитывать возможность скопления газа в закрытых от ветра местах или там, где скорость движения воздуха мала. В особо ответственных случаях целесообразно использовать на стадии проектирования математическое моделирование распространения газа, а также провести испытания моделей сооружений в аэродинамической трубе.

 

Местные температурные воздействия могут изменять направления воздушных потоков и, следовательно, повлиять на распространение газа. Например, большие перепады температур могут быть вблизи нагретых поверхностей оборудования. Кроме того, относительная плотность газа зависит как от температуры самого газа, так и от температуры окружающего воздуха.

 

Здания и сооружения

 

7.2.1 Общие положения

 

Внутри зданий и сооружений вероятность скопления взрывоопасной смеси после утечки значительно выше, чем на открытой площадке. Когда происходит утечка газа в закрытом пространстве, он смешивается с воздухом помещения, образуя газовоздушную смесь. Образование взрывоопасной смеси зависит от скорости утечки газа, расположения источника утечки, плотности газа, уровня вентиляции и имеющихся тепловых потоков. При определении оптимального места расположения датчиков следует учитывать эти факторы.

 

7.2.2 Невентилируемые здания и сооружения

 

Теоретически при отсутствии воздушных потоков, создаваемых вентиляцией, и (или) тепловых воздействий вытекающий из места утечки газ, если он легче воздуха, образует газовоздушную смесь, распространяющуюся от уровня, на котором располагается место утечки, до потолка. Если газ тяжелее воздуха, то вытекая из места утечки, он образует слой газовоздушной смеси, распространяющейся от уровня, на котором располагается место утечки, вниз до пола.

 

Если вытекающий под давлением газ имеет форму конусообразной струи, слой газовоздушной смеси формируется иначе. Например, если струя более легкого, чем воздух, газа направлена от источника утечки вниз, то слой газовоздушной смеси может распространиться от потолка до более низкого уровня, чем уровень источника утечки. Подобным же образом если струя более тяжелого, чем воздух, газа направлена вверх от источника утечки, то слой газовоздушной смеси может распространиться от пола до более высокого уровня, чем уровень источника утечки.

 

Примечание - Если в зданиях или сооружениях присутствует потенциальный источник утечки газа, то следует надлежащий уровень вентиляции.

 

7.2.3 Вентилируемые здания и сооружения

 

7.2.3.1 Общие положения

 

Вентилирование зданий и сооружений осуществляется путем либо "естественной" вентиляции, либо "искусственной" вентиляции (принудительно), либо при помощи их комбинации.

 

Примечание - Когда содержание горючих газов при утечке значительно ниже НКПР, газ будет перемещаться вместе с потоком воздуха вследствие небольших отличий в плотности газовой смеси и чистого воздуха.

 

7.2.3.2 Естественная вентиляция

 

Естественная вентиляция - это поток воздуха внутрь или изнутри здания или сооружений, циркулирующий через специально предназначенные для этого отверстия или любые другие имеющиеся в здании или сооружении проемы. Естественные вентиляционные воздушные потоки возникают по двум причинам: во-первых, благодаря перепаду давления в помещениях, вызванному ветром; во-вторых, благодаря подъемной силе, действующей на воздух в помещении из-за разницы температур (и, следовательно, плотности) воздуха внутри помещения и наружного воздуха. Когда температура внутри здания или сооружения выше наружной температуры, будет формироваться восходящий воздушный поток. Напротив, если температура внутри ниже наружной температуры, будет формироваться нисходящий воздушный поток.

 

Утечка газа или пара в здании или сооружении с естественной вентиляцией приведет к образованию смеси газа с воздухом так же, как это было описано в 7.2, с тем отличием, что при равной интенсивности утечки содержание горючего газа в газовоздушной смеси окажется ниже вследствие разбавления притоком свежего воздуха.

 

Если в помещении с естественной вентиляцией существует восходящий поток воздуха, то в случае утечки газа или пара, более тяжелых, чем воздух, газовоздушная смесь может распространиться как выше, так и ниже уровня, на котором расположен источник утечки. Наоборот, если в помещении с естественной вентиляцией существует нисходящий поток воздуха, то в случае утечки газа или пара, более легких, чем воздух, газовоздушная смесь может распространиться как ниже, так и выше уровня, на котором расположен источник утечки.

 

Примечание - Дополнительная информация, касающаяся естественной вентиляции, приведена в IEC 60079-10.

 

7.2.3.3 Искусственная вентиляция

 

Термин "искусственная вентиляция" применяют для описания воздушного потока, создаваемого механическим путем, т.е. вентиляторами. Воздушные потоки, создаваемые механическим путем, могут быть весьма значительными, кратность вентиляции, например, может быть больше 12.

 

Содержание газа в воздухе внутри замкнутого помещения с искусственной вентиляцией, как правило, гораздо меньше, чем содержание газа при подобной же утечке в помещении с естественной вентиляцией.

 

Примечание - Если в результате утечки создалась очень высокая концентрация горючего газа (выше 100% НКПР) или имеется поверхность горючей жидкости с низкой температурой вспышки, то интенсивная вентиляция может привести к увеличению объема взрывоопасной смеси.

 

В хорошо спроектированной системе вентиляции весь объем воздуха в помещении замещается притоком свежего воздуха. Если планировка помещения содержит участки со слабым движением воздуха или "мертвые зоны", то в них может накапливаться взрывоопасная смесь. Следовательно, в таких местах необходимо устанавливать газоанализаторы.

 

Примечание - Определить пути движения воздуха в помещении и присутствие "мертвых зон", в которых может накапливаться газовоздушная смесь, можно с помощью датчиков дыма.

 

Если датчик газоанализатора установлен в приточном или вытяжном канале системы принудительной вентиляции (в зависимости от того, где может произойти утечка), то аварийная сигнализация должна быть установлена на минимальное, практически приемлемое значение.

 

Некоторые датчики используют огнепреградители, спеченные из металлического порошка. На способность газовоздушной смеси диффундировать через огнепреградитель к чувствительному элементу неблагоприятно влияют очень высокие скорости воздушного потока, которые могут возникнуть в воздуховоде. В этом случае может помочь дополнительный кожух на датчике (например, ветрозащитный кожух).

 

Условия окружающей среды

 

Характеристики рабочих условий окружающей среды должны быть приведены в руководстве по эксплуатации оборудования.

 

Когда условия окружающей среды в предполагаемом месте эксплуатации выходят за пределы значений, установленных изготовителем, необходимо связаться с изготовителем оборудования для согласования с ним возможности применения оборудования в подобных условиях.

 


Дата добавления: 2018-09-23; просмотров: 893; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!