Аккумулирование электричества 31 страница



Истина в том, что концепция электростатической силы (Eq), приложенной к массе электрона, является одной из фундаментальных ошибок, введенных в электрическую теорию допущением, что электрический ток – это движение электрических зарядов. То, что (как утверждают цитированные авторы в выведении своего уравнения электрического тока) такая сила создавала бы ускорение потока тока, противоречит наблюдениям. Во вселенной движения движущиеся электроны, составляющие электрический ток, не заряжены и не обладают массой. Масса, включенная в поток тока, не является свойством электронов, которые являются просто вращающимися единицами пространства; это свойство материи проводника. Вместо электростатической силы t/s2, приложенной к массе t3/s3 и создающей ускорение F/m = t/s2 x s3/t3 = s/t2, на самом деле существует механическая сила (напряжение t/s2), приложенная к массе за единицу времени, сопротивление t2/s3, создающее постоянный поток, и электрический ток - V/R = t/s2 x s3/t2 = s/t. 

Более того, наблюдалось, что проводники электрически нейтральны, даже когда по ним течет ток. Объяснение, предложенное современной электрической теорией, таково: Отрицательные* заряды, которые, как допускается, существуют в электронах, нейтрализуются эквивалентными положительными* зарядами в ядре атома. Но если гипотетические электростатические заряды нейтрализуются, тогда не существует итогового заряда, нет электростатической силы, чтобы создавать движение, составляющее ток. Таким образом, даже на основании традиционной физической теории имеются многие свидетельства для демонстрации того, что движущиеся электроны не несут заряды. Отождествление феноменов электрического тока с механическими аспектами электричества, которое мы выводим из теории вселенной движения, предлагает полное и согласованное объяснение этих феноменов, не прибегая к гипотезе движущихся заряженных электронов.

Как отмечалось в главе 13, заряженные электроны подвергаются действию тех же сил, что и их незаряженные партнеры, и сил, относящихся непосредственно к зарядам. Тогда, теоретически, было бы возможно приложить напряжение и аккумулировать заряженные электроны в конденсаторах так же, как и незаряженные электроны (электрический ток). Однако на практике аккумулирование заряженных электронов выполняется абсолютно другим способом. Широко известен электростатический прибор – генератор Ван де Графа. В генераторе заряженные электроны создаются и впрыскиваются в движущуюся ленту изоляционного материала. Лента несет их в хранилище в виде большой полой металлической сферы. Электроны переходят из ленты в сферу, постепенно наращивая потенциал, способный достигать уровня нескольких миллионов вольт.

В предыдущих главах нашего исследования феноменов электрического тока мы обнаружили, что электроны, составляющие ток, движутся из областей более высокого напряжения (большей концентрации или более высокой скорости электронов) в области более низкого напряжения. В генераторе Ван де Графа электроны очень низкого электростатического потенциала на ленте входят в контейнер, потенциал в котором может пребывать в области миллиона вольт. Очевидно, мы имеем дело с двумя разными вещами, обладающими размерностями силы и привычно измеряемыми в вольтах, но физически разными в некоторых важных отношениях.

Сейчас, должно стать очевидным, почему на предшествующих страницах термин “потенциал” не использовался в связи с емкостью конденсатора или другими феноменами электрического тока. Свойство электрического тока, которое мы называем “напряжением”, - это механическая сила тока, сила, которая работает так же, как и сила, отвечающая за давление, оказываемое газом. С другой стороны, электростатический потенциал – это радиальная сила зарядов, которая быстро уменьшается с расстоянием. Потенциал заряженного электрона (в вольтах) во многом похож на вложение поступательного движения электрона в напряжение. Из этого следует: Даже если потенциал пребывает в области миллиона вольт, концентрация в накопительной сфере и соответствующее напряжение могут быть низкими. В данном случае, небольшого увеличения напряжения в электроде на конце ленты достаточно для выталкивания заряженных электронов в накопительную сферу, невзирая на высокий электростатический потенциал.

Многие современные исследователи осознают, что не могут рассматривать электрические токи лишь посредством одних электростатических сил. Например, Даффин говорит: “Для создания постоянного потока должны быть, по крайней мере, в виде части цепи, не электростатические силы, действующие на носителей заряда”.13 Признание, что эти силы действуют на “носителей заряда”, электроны, а не на заряды, особенно значимо, поскольку означает, что ни силы, ни объекты, на которые они действуют, не являются электростатическими. Даффин определяет не электростатические силы как выведенные “из электромагнитной индукции” или как “неоднородности, такие как границы между разными материалами или температурными градиентами”.

Поскольку электрические токи, доступные исследователям и общественности, создаются либо электромагнитной индукцией, либо процессами второй не электростатической категории, упомянутой Даффином (батареи и так далее), не электростатические силы, которые, как принято, должны существовать, адекватны, чтобы рассматриваться в феноменах тока в целом. Нет необходимости вводить гипотетический электростатический заряд и силу. Мы уже видели, что заряд не входит в математику потока тока и процессы аккумулирования. Сейчас мы находим, что им нет места и в количественном объяснении потока тока.

Добавление физического и математического свидетельства к свидетельству, обсужденному раньше, убедительно подтверждает, что математическая структура теории, имеющая дело с аккумулированием электрического тока, не является представлением физической реальности. Это не единичный случай. Как указывалось в главе 13, условия, при которых выполняется научное исследование, направляли научное исследование в математические каналы, и полученные результаты являются полностью математическими. Как выразился Ричард Фейнман:

“Каждый из наших законов является чисто математическим утверждением в форме довольно сложной и малопонятной математики”.56

Развитие математической структуры теории – выдающееся достижение, оно имело очень важные, даже впечатляющие практические результаты. Однако успехи стимулировали тенденцию забывать, что математика – это не физика. Она – полезный, возможно необходимый, инструмент для физика, но физические явления подвергаются множественным ограничениям, неприложимым к математике, используемой для представления этих явлений, и, следовательно, не осознаются, пока не определяются физически. Например, математическое представление пространства может быть “искривленным” или модифицированным каким-то другим способом, но это никоим образом не убеждает нас, что физическое пространство может быть модифицировано именно так. Вопрос может разрешаться только посредством чисто физического исследования, такого как приведенное в этой работе, которое находит, что подобная модификация пространства продолжений невозможна.

 

Глава 16

Индукция заряда

Прояснение структуры уравнения гравитации и применение новой информации к формулированию уравнения первичной силы открывает дверь к пониманию уравнения кулона F = QQ’/d2, выражающего электростатическую силу. Это уравнение установлено на эквивалентной основе без числового коэффициента; то есть, числовая величина заряда Q определяется самим уравнением. Поэтому казалось бы, если другие величины в уравнении, сила F и расстояние d, выражены в терминах сгс эквивалентов естественных единиц, то и Q тоже должно принимать сгс величину надлежащей естественной единицы. Но размерности заряда – это t/s, а естественная единица t/s в единицах сгс – это 3,334 x 10-11 сек/см, в то время как экспериментальная единица заряда обладает другой числовой величиной 4,803 x 10-10. В традиционной физике это не проблема, поскольку единица заряда рассматривается как независимая величина. Но в контексте теории вселенной движения, где все физические величины выражаются только в терминах пространства и времени, это стало головоломкой, которую мы смогли разгадать лишь недавно. Одним из новых положений информации, выведенным из самого недавнего анализа уравнения гравитации и введенным в уравнение первичной силы, явилось то, что отдельные уравнения силы имеют дело лишь с одной силой (движением). Сила, оказываемая зарядом А на заряд Б, и сила, оказываемая зарядом Б на заряд А, не являются отдельными сущностями, как казалось бы; это просто разные аспекты одной и той же силы. Причины такого вывода объяснялись в обсуждении гравитации.

Второе положение, также выведенное в результате изучения гравитации, описанного в главе 14, хотя к нему мы пришли независимо, таково. В обычном выражении каждого из уравнений сил имеется упущенный термин. Чтобы сбалансировать уравнение, должен быть термин, обозначенный как 1/s x (s/t)n-1. В уравнении гравитации это термин ускорения. В уравнении Кулона это величина, обратная пространству, 1/s.

Здесь мы сталкиваемся с разницей между двумя уравнениями, которые мы исследовали. В уравнении гравитации единица массы определяется независимо от уравнения. Однако в уравнении Кулона единица заряда определяется уравнением. Следовательно, любой термин, опущенный в уравнении, автоматически комбинировался с зарядом вместо того, чтобы вводиться отдельно, что необходимо в случае термина ускорения уравнения гравитации. Величина 1/s, которая, как мы видели, требуется для размерного равновесия, становится компонентом величины, которая называется “зарядом” в уравнении. На самом деле, это величина t/s (истинные размерности заряда), умноженная на 1/s (опущенный термин), что создает t/s2.

Те же соображения относятся к размеру единицы этой величины. Поскольку заряд не определяется независимо от уравнения, тот факт, что имеется лишь одна вовлеченная сила, означает, что выражение QQ’ на самом деле является Q¹/2Q’¹/2. Из этого следует: Пока в уравнение Кулона не вводится некий структурный коэффициент (как определено ранее), величина естественной единицы Q, выведенная из этого отношения, должна быть второй степенью естественной единицы t/s2. Производя вычисления, мы нашли, что в уравнение входит коэффициент 3. Возможно, он имеет то же происхождение, что и коэффициенты той же величины, относящиеся к ряду базовых уравнений, исследованных в томе 1. Бесспорно, он имеет размерное значение, хотя полного объяснения еще нет.

Как определялось в томе 1, естественная единица t/s2 составляет 7,316889 x 10-6 сек/см2. На основании открытий, приведенных в предыдущих параграфах, величина естественной единицы заряда составляет

 

Q = (3 x 7,316889 x 10-6)2 = 4,81832 x 10-10 эсе

 

Между этой величиной и величиной, предварительно вычисленной из константы Фарадея, имеется небольшое расхождение (порядка 1,0032). Подобно аналогичному расхождению между величинами для гравитационной константы, расхождение в величинах заряда пребывает в сфере эффектов вторичной массы. Возможно, оно будет рассматриваться тогда, когда будет предприниматься систематическое изучение соотношений вторичной массы.

Эквивалентность скалярных движений АБ и БА, играющая важную роль в отношениях сил, ответственна и за существование уникальной характеристики статического электричества – индукции зарядов. Одна из основных характеристик скалярного движения, возникающая в результате эквивалентности - оно равнодушно к положению в системе отсчета. С векторной точки зрения положения очень значимы. Векторное движение, возникающее в положении А и продолжающееся в направлении АБ, конкретно определяется в системе отсчета и резко отличается от подобного движения, возникающего в положении Б и продолжающегося в направлении БА. Поскольку скалярное движение обладает только величиной, скалярное движение атома А к атому Б просто уменьшает расстояние между А и Б. Как таковое, оно не может отличаться от подобного движения Б к А. Оба движения имеют одинаковую величину и не обладают никаким другим свойством.

Конечно, скалярное движение плюс соединение с системой отсчета обладают конкретным положением в системе: конкретной точкой отчета и определенным направлением. Но соединение не зависит от движения. Факторы, определяющие его природу, не обязательно постоянны, поскольку движение АБ не обязательно продолжается на основе АБ. Изменение в соединении может превратить его в БА или движение может быть альтернативой между этими двумя.

Вращательный момент скалярного движений заряженного атома поддерживает одинаковую связь с атомом в любом положении. Половина элементов вращательного движения достигает второго атома, а другая половина удаляется в эквивалентных направлениях и с эквивалентными скоростями. Но это не относится к вибрации вращения, составляющей заряд. В этом случае связь движения (заряда) с удаленным атомом непрерывно меняется; то есть, относительное движение двух атомов носит тот же вибрационный характер, что и сам заряд. Как было установлено, скалярное движение А (такое как заряд) к или от атома Б неотличимо от аналогичного движения Б к или от А. Следовательно, представление такого движения в пространственной системе отсчета может принимать любую форму.

Обычно для замены одного представления движения другим требуется перераспределение энергии, поэтому такие изменения обычно не происходят без внешних сил. По существу, первый закон движения Ньютона требует, чтобы движение в направлении АБ продолжалось в этом направлении бесконечно, пока не подвергнется действию какой-либо силы. Однако из общего правила есть исключения из-за существования класса феноменов, которые мы называем процессами нулевой энергии. Большинство физических процессов, исследованных на предыдущих страницах, работают либо посредством приложения энергии, либо происходят спонтанно с высвобождением энергии. Например, между атомами твердого тела имеется сила сцепления, и чтобы их разделить, следует приложить энергию. Если им позволяется перестраиваться, высвобождается определенное количество энергии. Но разные компоненты комбинации базовых движений не связаны друг с другом подобным образом во всех случаях. Часто они просто объединяются и свободны разделяться или комбинироваться без обретения или потери энергии.

Одним из процессов нулевой энергии является одновременное создание или разрушение зарядов одинаковой величины, но противоположной полярности. Именно существование этого процесса, наряду с эквивалентностью скалярных движений АБ и БА, делает возможным индукцию электрических зарядов. Как мы уже видели, все материальные объекты содержат концентрацию незаряженных электронов, являющихся вращающимися единицами пространства. В каждом случае, если в атоме материи существует электрон, атом существует и в единице пространства, составляющей электрон. Это можно сравнить с раствором спирта в воде. Атом спирта существует в воде, но справедливо и то, что атомы воды существуют в спирте. 

Сейчас давайте рассмотрим пример, в котором положительно* заряженное тело X располагается вблизи изолированного металлического объекта Y. Скалярное направление вибрационного движения (заряд) атома А в объекте Х периодически переворачивается. И при каждом перевороте точка отсчета движения А относительно любого свободно движущегося атома Б определяется случайно; то есть, в системе отсчета движение может возникать либо как движение А к Б, либо как движение Б к А. С помощью этого случайного процесса, в конце концов, движение распределяется поровну между АБ и БА.

Атом В, находящийся в пространстве продолжений, не движется свободно, поскольку для движения потребовалась бы энергия. Но атом Б в объекте Y, расположенный в пространстве электрона, не подвергается энергетическому ограничению, поскольку вращательные движения атома и связанного электрона направлены противоположно, и то же движение, которое составляет положительный* заряд атома, составляет и отрицательный* заряд электрона, потому что в данном случае он относится к другой точке отсчета. Создание противоположно направленных зарядов и есть процесс нулевой энергии. Отсюда следует, что атом В свободен отвечать на периодические изменения направления скалярного движения, возникающего в А. Иными словами, положительный* заряд атома А в объекте Х индуцирует подобный положительный* заряд атома В в объекте Y и отрицательный* заряд в связанном электроне.

Электрон легко отделяется от атома, и, следовательно, притягивается к ближней стороне объекта Y положительным зарядом объекта Х, покидая атом Б в единице пространства продолжений и с положительным* зарядом. Положения положительно* заряженных атомов фиксируются межатомными силами, и такие атомы не способны двигаться под действием отталкивающих сил, оказываемых заряженным объектом Х, но положительные* заряды передаются удаленному концу объекта Y посредством процесса индукции. Остаточный положительный* заряд атома Б индуцирует аналогичный заряд в соседнем атоме Г, расположенном в пространстве электрона. Электрон в Г, сейчас с отрицательным* зарядом, притягивается к атому Б, где нейтрализуется положительным* зарядом и восстанавливает нейтральный статус атома. Процесс повторяется, с каждым шагом все дальше и дальше отодвигая положительный* заряд от объекта Х до тех пор, пока не достигается удаленная сторона объекта Y.

Если начальный заряд объекта Х отрицательный,* отрицательный* заряд индуцируется в электроне, связанном с атомом Б. Это эквивалент положительного* заряда атома. В этом случае отрицательно* заряженный электрон отталкивается отрицательным* зарядом объекта Х и движется к удаленной стороне объекта Y. Остаточный, положительный* заряд атома передается ближайшей стороне объекта посредством процесса индукции.

Если металлический объект Y заменить диэлектриком, ситуация меняется, потому что в этом случае электроны больше не обладают способностью свободного движения. Индуцированный заряд атома и противоположный заряд электрона (или наоборот) остаются связанными. Однако такой атом может участвовать в относительной ориентации движений с нейтральной атомно-электронной единицей, с которой пребывает в контакте. В результате возникает двухатомная комбинация, в которой отрицательный* полюс одного атома нейтрализуется контактом с положительным* полюсом другого, оставляя одну атомно-электронную единицу заряженной положительно,* а другую отрицательно* (то есть, заряд находится в электроне).

Под влиянием внешнего заряда оптимальное разделение между непохожими частицами (условие, которое достигается, если носители отрицательных* зарядов свободно двигаются) максимально. Следовательно, ситуация в двухатомной комбинации благоприятнее, чем в единичном атоме, то есть комбинация обладает преимуществом. Еще большее разделение достигается тогда, когда между атомами заряженной комбинации располагается один или более нейтральных атомов. Каждое событие такого вида двигает либо положительный,* либо отрицательный* заряд в направлении, определенном индуцированным зарядом. Отсюда влияние индуцированного заряда на диэлектрик – разделение положительного* и отрицательного* зарядов, - аналогичное, но менее завершенное, чем разделение, которое имеет место в проводнике, потому что длина цепей атома ограничивается температурными силами.

На основании предшествующего объяснения, заряды создаются индукцией. Последующее разделение достигается за счет действия индуцированного заряда на вновь созданные заряды. Традиционная теория диэлектриков основана на концепции атомного ядра - гипотетической структуры, в которой компоненты удерживаются вместе притяжением между положительными* и отрицательными* зарядами. Допускается, что заряды обладают ограниченным количеством свободы движения и легко могут разделяться под действием внешнего заряда. Наше наблюдение, интерпретированное как подкрепляющие допущение, что в атоме всегда существуют пары положительных* и отрицательных* зарядов, состоит в следующем. Если заряженный диэлектрик разделяется, каждая из частей содержит положительные* и отрицательные* заряды. Это очень отличается от поведения зарядов в проводниках. Если металлический объект разрезается перпендикулярно линии силы, находясь под влиянием индуцированного заряда, две части объекта заряжены противоположно и остаются таковыми даже после удаления индуцированного заряда. Если та же процедура проделывается с диэлектриком, обе части обладают положительными* и отрицательными* зарядами на противоположных сторонах, как в первичном объекте до разделения. Когда индуцированный заряд убирается, обе части возвращаются к нейтральному статусу. Нынешняя интерпретация этих результатов, как говорится в современном учебнике, такова:


Дата добавления: 2018-09-20; просмотров: 320; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!