Аккумулирование электричества 15 страница



На этой основе распределение молекул с разными индивидуальными температурами принимает форму вероятностной функции øt, где t – это отклонение от средней температуры. Вклад øt молекул при любой удельной температуре в отклонение удельной теплоты от теоретической величины, соответствующей средней температуре, зависит не только от числа таких молекул, но и от величины отклонения удельной теплоты, приписываемого каждой молекуле. То есть, от разницы между удельной теплотой молекулы и удельной теплотой молекулы при средней температуре совокупности. Поскольку сегмент удельной теплоты, где происходит отклонение, линеен, отклонение пропорционально температурной разнице t и может быть представлено как kt. Общее отклонение, возникающее за счет øt молекул при температуре t равно ktøt, а сумма всех отклонений в одном направлении (положительном или отрицательном) может быть получена путем интегрирования.

Довольно очевидно, что отклонения экспериментальных кривых удельной теплоты от теоретических, прямых линий (и на нулевом уровне, и в точке перехода) обладают общими характеристиками вероятностных кривых. Однако экспериментальные величины не достаточно точные, особенно в области температур низкого перехода, чтобы стоило пытаться проводить любые количественные корреляции между теоретическими и экспериментальными результатами. Более того, еще имеется определенная теоретическая неопределенность в связи с надлежащим применением вероятностной функции, что препятствует установлению точного положения вероятностной кривой.

В данной ситуации, неопределенный элемент – это величина единицы вероятности. Уравнение 6-1 математически завершено, но чтобы применить его или любое из его производных к любой физической ситуации, необходимо установить физическую единицу, соответствующую математической единице. Один из уместных вопросов, еще не имеющий определенного ответа: Является ли единица вероятности одинаковой для всех веществ. Если это так, тогда нижняя часть кривой, будучи понижена до обычной температурной основы, должна быть одинаковой для всех веществ с начальным уровнем 1,32. На этом основании удельная теплота совокупности при температуре T0, когда теоретическая кривая пересекается с нулевой осью, должна быть константой. На самом деле, большинство элементов с начальным уровнем –1,32 обладают измеренной удельной теплотой около 0,20 в этой точке, но некоторые другие демонстрируют значительные отклонения от этой величины. Все еще не ясно, является ли это результатом изменчивости в единицу вероятности или отражает неточности в экспериментальных величинах.

Совпадают ли ниже T0 все кривые с одинаковым максимальным отклонением (0,20), тоже не ясно. Имеется большой разброс и в наблюдаемой удельной теплоте ниже 0,20, который можно приписать ошибкам в измерении, но большую часть разброса, возможно, можно объяснить как результат отсутствия температурного равновесия. На низких температурах для установления равновесия требуется больше времени, и даже точное измерение не даст точного результата до тех пор, пока совокупность не пребывает в температурном равновесии. Значимо, что удельная теплота изученных обычных элементов лишь слегка отклоняется от плавной кривой в области низкой температуры. Рисунок 6 демонстрирует это совпадение, показывая измеренные величины удельной теплоты шести из таких элементов на температурной шкале по отношению к T0.

Если единица вероятности одинакова для всех или большинства элементов, как предполагают эти данные, отклонение экспериментальной кривой от теоретической кривой для единичного атома в точке первого перехода T1, тоже должно быть постоянной величиной. Предварительное исследование кривых элементов, следующих правильным паттернам, указывает на то, что величины отклонения действительно лежат в области приблизительно от 0,55 до около 0,70. Дополнительная работа потребуется прежде, чем эти кривые можно будет установить достаточно точно для того, чтобы определить, существует ли полное совпадение. Современные указания говорят о том, что отклонение T1, на самом деле, является константой для всех обычных элементов и находится рядом с тройным отклонением при T0.

 

Рисунок 6: Удельная теплота – низкие температуры

 

Владея вышеприведенной информацией в связи с общей природой отклонений от теоретических кривых главы 5 за счет способа выполнения измерений, сейчас мы готовы исследовать корреляцию между теоретическими кривыми и измеренной удельной теплотой. Чтобы получить полное определение удельной теплоты вещества, необходимо не только установить формы кривых удельной теплоты (цель, достижению которой помогает большая часть предыдущего обсуждения), но и определить температурную шкалу каждой кривой. Хотя теоретические выводы в связи с двумя теоретическими аспектами ситуации удельной теплоты, подобно всем выводам данной работы, выведены с помощью развития следствий фундаментальных постулатов теории Обратной Системы, они обязательно достигаются двумя линиями теоретического развития. По этой причине более значимое сравнение с экспериментальными данными может быть представлено, если мы имеем дело с двумя аспектами независимо. Поэтому в этой главе, экспериментальные величины будут графически сравниваться с теоретическими кривыми, с эмпирическими температурными шкалами. Глава 7 завершит определение кривых выведением релевантных температурных величин.

Рисунок 7: Удельная теплота

 

 

Кривые на рисунке 7 типичны для кривых большинства элементов.7 Как указывалось на рисунке 4, конечный, прямолинейный сегмент каждой кривой занимает большую часть температурной области твердого состояния в случае элементов с высокой точкой плавления. Следовательно, значимые характеристики кривых приспосабливаются к более низким температурам, и чтобы изобразить их яснее, на иллюстрациях показана только область более низкой температуры (до 300ºК). Оставшиеся сегменты кривых на рисунке 7 являются расширениями линий, показанных на графике, за исключением случая вольфрама, который подвергается переходу к статусу четырех единиц при температуре около 325ºК.

Рисунок 8 – это аналогичная группа кривых удельной теплоты для четырех электроотрицательных элементов с начальным уровнем –0,66. Кроме более высокого начального уровня, эти кривые идентичны кривым рисунка 7, когда все они понижены до обычной температурной шкалы. Переход к вибрации 2-х единиц происходит при величине 4,63 (2¹/3 R), невзирая на более высокий начальный уровень. Это положение будет рассматриваться подробнее в главе 7. Верхние части кривых свинца и сурьмы, не показанные на рисунке, являются расширениями линий на графике. Мышьяк и кремний обладают переходами при температурах выше 300ºК.

 

Рисунок 8: Удельная теплота

Как указывалось в главе 5, имеется ряд элементов, подвергающихся модификации температурной шкалы в точке первого перехода. Две кривые с модифицированным вторым сегментом показаны на рисунке 9.

Рисунок 9: Удельная теплота

На самом деле, две кривые применимы к четырем элементам, поскольку удельная теплота лития следует кривой алюминия, в то время как рутений совпадает с кривой молибдена. Совпадение кривых удельной теплоты разных элементов, как в упомянутых примерах, не так уже необычно, как можно было бы ожидать. Число вероятных паттернов кривых довольно ограничено, и, как мы увидим в следующей главе, где будет исследоваться природа изменения в температуре, температурные коэффициенты согласуются с удельной теплотой в основном в относительно узкой области.

Также в рисунок 9 включен пример кривой удельной теплоты элемента, который подвергается внутренней реструктуризации, изменяющей температурный паттерн. Измерения, показанные для самария, следуют обычному паттерну вплоть до приближения к точке первого перехода при 35ºК. В этой точке, очевидно, начинается модификация молекулярной структуры, вместо перехода, или дополнение к обычному переходу в вибрационный статус двух единиц. Процесс поглощает значительное количество тепла, что проявляется как прибавление к измеренной удельной теплоте выше следующей части температурной области. При почти 175ºК регулировка завершается, и удельная теплота возвращается к обычной кривой. Большинство других редкоземельных элементов подвергается подобным регулировкам при сопоставимых температурах. Если где-то в другом месте происходят изменения такого рода, почти всегда они совершаются при относительно высоких температурах. Причина такой особенности редкоземельной группы еще не известна.

 

Рисунок 10: Удельная теплота – Водород

 

Все виды отклонений от нормального паттерна, обсужденные до сих пор, обнаруживаются у электроотрицательных элементов групп с более низким вращением. Имеется и дополнительный источник изменчивости удельной теплоты данных элементов, поскольку их атомы могут сочетаться друг с другом для формирования молекул. В результате существует достаточно широкое разнообразие поведения, обуславливающее уникальную кривую удельной теплоты почти для каждого элемента. Особое внимание привлекают случаи, когда измерение достигается за счет пропуска характеристик нормального паттерна. Например, кривая для неона – это единичная, прямая линия, начинающаяся с начального уровня –1,32 и продолжающаяся до точки плавления. Кривая удельной теплоты молекулы водорода, рисунок 10, - тоже прямая линия, но водород совсем не обладает компонентом удельной теплоты вращения, поэтому эта линия тянется лишь с отрицательного начального уровня –1,32 и продолжается до удельной теплоты положительного начального уровня +1,32, где находится точка плавления.

Удельная теплота бинарных соединений, основанных на обычной ориентации (это просто комбинации элементов Деления I и Деления IV), следует тому же паттерну, что и электроположительные элементы. У них каждый атом ведет себя как индивидуальная температурная единица, как это было бы в однородной совокупности одинаковых атомов. Молекулярная удельная теплота таких соединений в два раза больше величин, уже установленных для элементов, не потому что удельная теплота на атом другая, а потому что в каждой молекуле содержатся два атома.

Кривые для KCl и CaS, рисунок 11, иллюстрируют паттерн удельной теплоты данного класса соединений. На рисунке 11 также показаны некоторые бинарные соединения других структурных видов, соответствующие тому же нормальному паттерну.

 

Рисунок 11

 

Поскольку у элементов тоже имеется отклонение от нормального паттерна, когда некоторые соединения электроотрицательных элементов обладают более высоким начальным уровнем, у соединений, таких как ZnO и SnO, этот уровень равен нулю, а не –0,66 как у элементов.

Некоторые большие молекулы температурно работают как объединения независимых атомов. Типичный пример - CaF2 and FeS2. Однако чаще два или более атомов, составляющих молекулы, действуют как одна температурная единица. Например, и молекула KHF2, состоящая из четырех атомов, и молекула CsClO4, состоящая из шести атомов, температурно действуют как три единицы. В последующем обсуждении для обозначения любой комбинации атомов, работающей как одна температурная единица, будет использоваться термин температурная группа. Там где индивидуальные атомы участвуют в температурном движении совместно с группами атомов, индивидуальные атомы будут называться моноатомными группами. На этом основании можно сказать, что в каждой из молекул KHF2 и CsClO4 имеются три температурные группы.

Огромное большинство соединений не только формируют температурные группы, но при изменении температуры меняют число групп в молекуле. Обычный паттерн иллюстрируется хлоридами хрома. При очень низких температурах CrCl2 действует как одна температурная группа, CrCl3 как две. Начальные уровни удельной теплоты соответственно –1,32 и –2,64. Вплоть до точки первого перехода происходит постепенное увеличение среднего числа температурных групп на молекулу, в точке перехода температура всех атомов работает независимо. В начальной точке второго сегмента кривой независимый статус поддерживается, а выше температуры перехода молекула CrCl2 действует как три температурные группы, а CrCl3 как четыре.

На нынешней стадии исследования, из теории, мы можем определить вероятные способы расщепления молекулы на температурные группы, но еще не можем указывать, какие из вероятностей будут превалировать при любой данной температуре, или где будет происходить переход от одной к другой. Однако уже разработанная теоретическая информация позволяет анализировать эмпирические данные и устанавливать паттерн удельной теплоты каждого вещества; то есть, определять, как оно будет температурно действовать. За исключением некоторых случаев, в основном включающих очень большие молекулы, где паттерн удельной теплоты необычно сложен, и в тех примерах, когда ошибки в экспериментах приводят к ошибочной интерпретации, можно определять действующее число температурных групп в важных точках кривых. Как только имеется информация для любого вещества, определение кривой удельной теплоты, по сути, завершено, за исключением температурной шкалы, определители которой будет обсуждаться в главе 7. Если число активных температурных групп соединения равно n, а начальный уровень –1,32 n, начальная точка второго сегмента кривой Типа 1 - 3,89 n, а точка первого перехода – 4,63 n.

Тенденция атомов многоатомных молекул формировать температурные группы особенно очевидна там, где молекулы содержат радикалы, за счет больших различий в силах сцепления, ответственных за существование радикалов. Степень, с которой естественно поддерживается объединение в температурные группы, зависит от относительной силы сцепления и силы разрушения. Такие радикалы, как ОН и СN, у которых связи очень сильные, действуют как единичные температурные группы при всех обычных условиях. Те же, у которых связи слабее (CO3, SO4, NO3 и так далее), действуют как одни единицы при более низких температурах. Таким образом, мы обнаруживаем, что в начальных точках первого и второго сегментов кривых удельной теплоты у MnCO3 имеются две группы, у Na2CO3 три группы, у KAl(SO4)2 четыре группы, у Ca3(PO4)2 пять групп и так далее. Однако при более высоких температурах радикалы этого класса расщепляются на две или более температурные группы. Еще более слабые радикалы, такие как ClO4, составляют две температурные группы даже при более низких температурах.

Как упоминалось в томе 1, пограничная линия между радикалами и группами независимых атомов довольно неопределенная. В общем, область силы связи, требующейся для структурного радикала, относительно велика, и мы находим много групп, осознаваемых как радикалы, кристаллизующиеся в такие структуры как куб CaTiO3, в котором радикал как таковой роли не играет. Область, требующаяся в температурном движении, намного меньше, особенно при низких температурах, и имеется много атомных групп, действующих температурно так же, как и опознанные радикалы. Например, у Li3CO3 два атома лития действуют как единичная температурная группа, и кривая удельной теплоты данного соединения похожа на кривую MgCO3, а не Na2CO3.

Расширение температурного движения посредством разрушения некоторых сильных связей при более высоких температурах приводит к увеличению разнообразия модификаций кривых удельной теплоты. Например, MoS2 имеет лишь две температурные группы в более низкой области, но как только температура поднимается, комбинация S2 распадается, и все атомы начинают вибрировать независимо. Аналогично, VCl2 образует из одной группы три. Распад радикала рассматривается как изменение из двух групп в три у SrCO3, из одной группы в три у AgNO3, из двух групп в шесть у (NH4)2SO4. Все эти изменения происходят в или до точки первого перехода. Другие соединения совершают первый переход на начальной основе и расщепляются на большее число температурных групп позже. В нормальном паттерне радикал, действующий как одна температурная группа при низких температурах, расщепляется на две группы в температурной области второго сегмента кривой, как делает это радикал у SrCO3, PbCO3 и других подобных соединений на более низком уровне. Имеется ряд структур, таких как KMnO4 и KIO3, у которых увеличение числа групп в молекулах происходит с двух до трех. У Pb3(PO4)2, имеющего два радикала, увеличение происходит с пяти групп до семи групп, и так далее.

Эффект кристаллизации воды меняется в зависимости от силы сцепления. Например, при низких температурах BaCl2 · 2H2O представляет собой три температурные группы, молекулы воды тесно связаны с атомами соединения. При повышении температуры связи ослабевают, и молекулы начинают вибрировать на основе пяти групп. У Al2(SO4)3.6H2O и NH4Al(SO4)2.12H2O связи с молекулами воды остаются фиксированными во всей области экспериментов вплоть до 300ºК; эти гидроокиси имеют соответственно пять и шесть температурных групп, как и у соответствующих безводных соединений.

На рисунке 12 показан пример значительного изменения температурного поведения за счет разрушения межатомных сил температурными силами. Радикал CrO3 в соединении AgCrO3 является единичной температурной группой при очень низких температурах. В температурной области до точки первого перехода происходит постепенное разделение на две группы, и изменение до вибрации двух единиц совершается на основе радикала, состоящего из двух групп. При температуре около 150ºК все четыре атома в радикале начинают вибрировать независимо, и молекула подвергается переходу из второго сегмента кривой для трех групп во второй сегмент кривой для пяти групп. При около 250ºК соединение совершает обычный переход к вибрации трех единиц, продолжая работать как пять температурных групп.

Используемые в качестве примеров соединения в основном выбирались на основе доступности экспериментальных данных в значимых температурных пределах. В целях точного определения наклона каждого из прямолинейных сегментов любой эмпирической кривой необходимо иметь измерения в температурной области, в которой отклонения за счет близости точки перехода незначительные. Примеры выбранных экспериментальных результатов удовлетворяют этому требованию.

 

Рисунок 12: Удельная теплота - AgCrO 3


Дата добавления: 2018-09-20; просмотров: 265; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!