Пошаговый процесс строительства



Изотопа водорода

  первичная масса 1,00000000
  магнитная масса 0,00639205
  электрическая масса 0,00057870
М ½-½-0 безмассовый нейтрон 1,00697075*
М ½-½-(1) нейтрино 0,00057870*
М 1-1-(1) протон 1,00754945
М 2-2-(1) нейтрино 0,00057870*
М 1½-1½-(2) водород (Н1) 1,00812815

* потенциальная масса

 

Локальная окружающая среда изобилует нейтрино. Следовательно, условие для создания новой материи в форме водорода с помощью процесса прибавления – это непрерывное обеспечение безмассовых нейтронов. В главе 15 мы обнаружим наличие гигантского процесса, действующего для обеспечения такого запаса.

Прибавление космического нейтрино, смещение вращения которого происходит на противоположной стороне от границы единицы, к протону вовлекает дополнительную первичную электрическую единицу, поскольку и вращение во времени, и вращение в пространстве должны начинаться с единицы. Пространственное действие вращения космического нейтрино трехмерно, поскольку пространственное направление движения во времени неопределенно. Общее прибавление массы к протону при создании сложного нейтрона составляет 0,00144676, и результирующая масса частицы составляет 1,00899621. Она была измерена как 1,008982.

Далее приводится таблица масс частиц и компонентов массы, из которых построены эти массы. Для сравнения приводятся эмпирические величины из подборки 1957 года. Как замечалось раньше, корреляция для электрона и протона удовлетворительна, поскольку лежит в пределах оценочной области погрешности эксперимента. Расхождение в случае более тяжелых частиц невелико, но превышает погрешность эксперимента. Пребывает ли источник расхождения в теории или в экспериментальных определениях остается невыясненным.

 


Структура массы

Частица

Масса

Вычисленная Наблюдаемая
e - c заряженный электрон 0,00054874 0,00054876
e - c заряженный позитрон 0,00054874 0,00054876
e электрон 0,00057870* безмассовый
e позитрон 0,00057870* безмассовый
e нейтрино 0,00057870* безмассовый
p + m + e безмассовый нейтрон 1,00697075* безмассовый
p + m + 2e протон 1,00754945 ненаблюдаемый
p + m + 2e + C заряженный протон 1,00759439 1,007593
p + m + 3e водород (H1) 1,008l28l5 1,008142
p + m + 3e + E сложный нейтрон 1,00899621 1,008982

* потенциальная масса

 

В первом издании отношение между естественной единицей массы и случайной единицей в системе СГС определялось в терминах гравитационной константы. Недавно Тодд Келсо и Стивен Берлин указали, что установленное таким образом отношение не может быть переведено в другую систему единиц, такую как система СИ (метр, килограмм, секунда). Стало очевидно, что интерпретация гравитационного феномена, на которой базировалось предыдущее определение, было ошибочной. Чтобы определить ошибку, ситуация была проанализирована.

Как описано в этом томе, ошибочность интерпретации уравнения гравитации не оказывает никакого влияния на любую характеристику теоретических результатов, полученных из СТОВ. Она лишь оставила эту систему теории без связи между уравнением гравитации и теоретической структурой. Как только ситуация рассматривается в таком свете, сразу же становится ясно, что для СТОВ не характерна связь между уравнением и физической теорией. Традиционная теория тоже не определяет эту связь. Учебники по физике считают необходимым признать этот факт в таких утверждениях, как: “Следует отметить, что закон всеобщего тяготения Ньютона не является определяющим уравнением как второй принцип механики и не может выводиться из определяющих уравнений. Он представляет собой наблюдаемое отношение”. Это теоретическое расхождение, которое не способна разрешить традиционная физика. Но поскольку это отдельное расхождение, его можно засунуть под ковер, приписывая гравитационной константе выдуманные размерности.

Из этого следует, что ошибка объясняется интерпретацией “наблюдаемого отношения”, общей для традиционной теории и СТОВ. Очевидно, разработчики обеих теоретических систем неправильно поняли истинную природу феномена. Как говорилось в предыдущих главах, в действительности одна масса не действует на другую, каждая следует своим путем, независимым от других. Но результаты движения вовнутрь двух масс похожи на те, которые получились бы, если бы массы притягивали друг друга. Следовательно, на основании “как бы” эти результаты можно представить в терминах силы притяжения. Но чтобы это сделать, нам придется поместить силы “как бы” на ту же основу, что и реальные силы.

Сила может действовать только против сопротивления. Поэтому, когда мы приписываем силу движению одной массы, мы не можем приписать ее движению другой массы. Второй массе мы должны приписать сопротивление. Следовательно, “как бы” сила - сила гравитации - оказывается против “как бы” инерционного сопротивления. В предыдущем обсуждении мы определили гравитацию как трехмерное движение s 3 /t 3, а инерцию как трехмерное сопротивление движению t 3 /s 3. Следовательно, произведение гравитационного движения на инерционное сопротивление не содержит измерений массы во второй степени, как указывает традиционное выражение уравнения гравитации; оно не обладает измерениями.

Это как раз та ситуация, в которой очень помогает способность сводить все физические величины к терминам пространства-времени. Прежде чем затронуть проблему числовых величин, было бы удобно независимо исследовать ситуацию с размерностью. В современной практике уравнение гравитации обладает следующими размерностями:

 

(дины см2 г-2) x г2 x см-2 = дины                (13-1)

 

Сводя уравнение 13-1 к терминам пространства-времени в соответствии с отношениями, установленными в главе 12 (в которых дины в г-см/сек2 выражаются как t ³/s ³ x s x 1/t ² = t /s ²), мы получаем

 

(t/s² x s² x s6/t6) x t6/s6 x 1/s² = t/s²  (13-2)

 

В свете нового понимания термина mm ' как безразмерного произведения гравитационной и инерционной массы, очевидно, что размерность s6/t6  принадлежит скорее mm ', чем гравитационной константе. Когда они применяются таким способом, результирующие размерности mm ' взаимно уничтожаются, что и делают истинные теоретические размерности. Следовательно, мы можем заменить их правильными размерностями. Как указывалось в первом издании, в привычном приписывании размерностей этому уравнению есть еще две ошибки. На самом деле термин “расстояние” не обладает размерностями. Это отношение 1/n2 к 1/12. Размерности, ошибочно приписываемые этому термину, принадлежат термину, существование которого не осознавалось потому, что он равен единице, и, следовательно, не входит в числовые вычисления. Чтобы поместить “как бы” гравитационное взаимодействие на ту же основу, что и реальное взаимодействие, мы должны выразить его в терминах действия силы на сопротивление, а не как действие массы на сопротивление. И поскольку размерности термина “масса” уничтожились так, что гравитационная масса входит в уравнение лишь как число, не обладающее размерностями, сила гравитации должна выражаться в терминах истинной силы; то есть как t/s2. Тогда правильная форма уравнения такова:

 

(s³/t³ x t³/s³) x t/s² = t/s²          (13-3)

 

Возвращаясь к числовым величинам, заметим: в то время как размерности термина mm' взаимно уничтожились, величины не уничтожились. Каждая единица массы является и единицей s³/t³ и единицей t³/s³, каждая в надлежащем контексте. Поскольку единицы независимы, действующая величина “как бы” действия m единиц гравитации против m' единиц инерционного сопротивления равна mm'. Однако выражение обеих масс в терминах традиционных единиц создает числовую ошибку, поскольку лишь термин инерционной массы уравновешивается традиционной величиной массы на другой стороне уравнения. Чтобы компенсировать эту ошибку, в гравитационную константу следует ввести соответствующий обратный коэффициент. Ошибки нет, если гравитационная масса выражается в естественных единицах, поскольку величина 1 не требует никакого уравновешивающего термина. Следовательно, величина необходимого корректирующего коэффициента определяется отношением между естественными и традиционными единицами.

Один грамм составляет 6,02486 x 1023 единиц инерционной массы (t³/s³). Обратная величина составляет 1,65979 x 10-24. Но при гравитационном взаимодействии действует лишь одна шестая общей величины массы, потому что “как бы” взаимодействие происходит только в одном измерении и только в одном из двух направлений этого измерения. Следовательно, общая величина s³/t³  единиц, соответствующая действующей массе одного грамма, составляет 9,95 x 74 x 10-24. Выражение этой массы как одной единицы увеличивает числовую величину, и в качестве компонента гравитационной константы должна включаться коррекция этой величины.

Из-за влияния вторичной массы требуется небольшая дополнительная коррекция. В связи с первичной массой гравитация и инерция обратны друг другу; то есть, первичная масса составляет p /(p + s ) единиц гравитационной массы и p /(p + s) единиц инерционной массы, где p и s – соответственно первичные и вторичные массы. Произведение единицы гравитационной массы и единицы инерционной массы составляет 1/(1 + s )2 единиц первичной массы. Если результат выражается в терминах инерционной массы, вводится еще один коэффициент 1 + s. Тогда общее действие вторичной массы – это введение коэффициента 1,019299. Применяя этот коэффициент к величине 9,95874 x 10-24, мы получаем 1,015093 x 10-23.

Замена термина расстояния 1/s2 термином силы t/s2 выливается в появление размерности времени, которое во избежание создания числового дисбаланса должно выражаться в естественных единицах. Числовая величина естественной единицы времени 1,520655 x 10-16 частично компенсирует ошибки в терминах массы. Общая коррекция, которую следует произвести, такова: 1,015093 x 10-23, деленное на естественную единицу времени; в результате получается 6,67537x10-8. Это и есть гравитационная постоянная в системе единиц СГС.

Рассматривая вопрос превращения в другую систему единиц, проблему, приведшую к новому изучению ситуации, мы обнаруживаем, что превращение единиц из СГС в МКС в традиционной форме уравнения (13-1) приводит к изменению 10-6 в термине массы, 10-4 в термине расстояния и 10-5 в термине силы. Тогда для равновесия требуется изменение 10-3 в гравитационной константе. В теоретическом уравнении (13-3) общее действие изменения в системе единиц сводится к отношению естественных и традиционных единиц массы. Как можно видеть из предоставленного объяснения, гравитационная константа пропорциональна отношению этих единиц. Перевод традиционной единицы из граммов в килограммы меняет это отношение на 10-3. Гравитационная константа меняется на ту же величину. Это согласуется с результатом, наблюдаемым в уравнении 13-1.

Те, кто знаком с первым изданием, заметят, что величины естественной единицы инерционной массы и соответствующие величины, приведенные раньше в этой главе, больше величин, приведенных в первой публикации. В начале исследования казалось, что коэффициент 1/3, введенный в ситуацию массы, являлся достаточным оправданием для применения этого коэффициента к величине базовой единицы. Как видно из предыдущих параграфов, сейчас мы находим, что коэффициент 1/3 является результатом одномерной природы гравитационного взаимодействия “как бы”. Поэтому этот коэффициент убран из единиц массы. В результате, как определено в этом издании, естественная единица инерционной массы в три раза больше, чем величина, приведенная в первом издании (с маленькой поправкой для отражения результатов непрерывного изучения деталей включенных явлений). Использование больших единиц не влияет на физические отношения, включающие инерционную массу, поскольку выражения этих отношений являются балансирующими уравнениями, в которых термины массы пребывают в равновесии с терминами, представляющими величины, выведенные из массы.

Глава 14

Космические элементы

Как указывалось в главе 6, инверсия пространства и времени в физических явлениях, возможная по причине обратной взаимообусловленности двух сущностей, может относиться только к одной из составляющих движений сложной физической сущности или явления, или ко всей структуре в целом. Мы уже исследовали некоторые эффекты инверсии индивидуальных компонентов движения, такие как поступательное движение во времени, отрицательное смещение в электрическом измерении атомного вращения, и так далее. Сейчас мы готовы рассмотреть следствие полных инверсий.

Уже отмечалось, что комбинации вращения, составляющего атомы и субатомные частицы материальной системы, являются фотонами, вибрирующими во времени и вращающимися в пространстве, и что они соответствуют аналогичной системе комбинаций, в которых фотоны вибрируют в пространстве и вращаются во времени. В этой связи следует подчеркнуть, что обратная система - космическая система атомов и субатомных частиц - идентична материальной системе во всех отношениях, кроме инверсии пространства-времени. Имеется космический углерод (2)-(1)-(4), соответствующий углероду М 4-1-4. Имеется космическое нейтрино К (½)-(½)-1, соответствующее нейтрино M ½-½-(1), и так далее.

Более того, идентичность одинаково распространяется на все сущности и феномены физической Вселенной. Поскольку все существующее в материальном секторе Вселенной проявлено из движения, каждый пункт точно дублируется в космическом секторе со сменой пространства и времени. Следовательно, детальное описание материального сектора Вселенной, которое шаг за шагом мы выводим из развития следствий базовых постулатов СТОВ, распространяется и на космический сектор. Поэтому, хотя космический сектор почти не наблюдаем, у нас есть точное и детальное знание этого сектора (кроме информации об особых единичных представителях разных классов объектов), как и материального сектора.

Однако следует отметить: наше знание материального сектора – это знание того, как явления в этом секторе выглядят при наблюдении из точки внутри этого сектора; то есть, положения в гравитационно связанной системе. То, что мы знаем о космическом секторе посредством применения обратного отношения, - это знание той же природы - информация о том, как явления космического сектора выглядят при наблюдении из положения в этом секторе; положения в системе, гравитационно связанной во времени. С нашей точки зрения такое знание не обладает непосредственным значением, поскольку мы не можем наблюдать с такого положения. Но оно создает основу, базируясь на которой мы можем определить, как явления космического сектора и явления, возникающие в этом секторе, теоретически предстали бы нашему наблюдению.

Один из самых запутанных вопросов современной физики: Что такое антиматерия? Соображения симметрии, введенные в современные теории структуры материи, указывают на обязательное существование “анти” форм элементов, из которых строится обычная материя. И что во Вселенной в целом “антиматерия”, построенная этими “антиэлементами”, должна существовать в таком же изобилии, что и обычная материя. Теоретически, “антизвезд” и “антигалактик” должно быть столько же, сколько обычных звезд и обычных галактик. Но нет убедительного свидетельства существования любых таких объектов. Предполагалось, что некоторые из наблюдаемых галактик могли состоять из антиматерии. Например, Олфвен утверждает, что имеется “определенная вероятность того, что, астрономически говоря, по соседству с нами могут находиться антимиры. Нельзя исключать, что туманность Андромеды, самая близкая к нам галактика, или даже звезды внутри нашей галактики состоят из антиматерии”.60 Но при условии отсутствия любых демонстрируемых средств распознавания излучения, создаваемого галактикой гипотетической антиматерии, и излучения, создаваемого галактикой обычной материи, это чистое допущение. Поэтому вопрос остается открытым. Где же находится антиматерия?

СТОВ предлагает ответ. Новая Структура Теории признает, что антиматерия (на самом деле обратная материя, космическая материя, мы называем ее s) существует, она так же изобильна в физической Вселенной, как и обычная материя. СТОВ говорит: галактики космической материи не локализованы в пространстве; они локализованы в трехмерном времени. Последовательность времени, в которой живем мы, несет нас в трехмерном времени способом, аналогичным линейному движению в трехмерном пространстве. Лишь небольшая часть общего количества объектов, занимающих положения в пространственной системе отсчета, сталкивалась бы с ходом одномерного пространственного движения такого вида. То же справедливо и для ряда космических объектов, которые в нашей последовательности сталкиваются с ходом времени, по сравнению с количеством объектов, занимающих положения в трехмерной временной системе отсчета.

Более того, гравитация в космическом секторе действует во времени, а не в пространстве. Атомы, из которых формируется космическая совокупность, близки во времени, но широко рассеяны в пространстве. Поэтому даже то относительно небольшое количество космических совокупностей, с которыми мы сталкиваемся в своем движении во времени, не воспринимаются как пространственные совокупности; они воспринимаются как индивидуальные атомы, широко рассеянные в пространстве. Мы не можем опознать космическую звезду или галактику потому, что наблюдаем лишь один атом за раз. Излучение из космической совокупности тоже рассеяно. Такое излучение постоянно достигает нас, но мы наблюдаем его как исходящее от индивидуальных широко рассеянных атомов, а не локализованных совокупностей. Поэтому, с нашей точки зрения, излучение изотропно. Несомненно, такое излучение может приравниваться к “излучению черного тела”, статусу, ныне приписываемому остаткам Большого Взрыва.

Все сенсационные предположения о существовании наблюдаемых звезд и галактик антиматерии и возможных следствий взаимодействия этих совокупностей с телами, состоящими из обычной материи, не имеют под собой никакой основы. Генераторы антиматерии в научной фантастике, обеспечивающие энергию для космического путешествия, будут оставаться на полках научной фантастики.

Особо следует отметить разницу между космической звездой и белым карликом. Пока рассматривается поступательная скорость, оба находятся на стороне времени от разделяющей линии; то есть, оба состоят из материи, движущейся быстрее скорости света. Белый карлик ничем не отличается от обычной звезды материального сектора. Пространственно-временное отношение перевернуто лишь в поступательном движении компонентов. И, наоборот, у космической звезды все пространственно-временные отношения обратны пространственно-временным отношениям обычной материальной звезды; не только поступательное движение, но и вибрационные и вращательные движения составляющих атомов, и что особо значимо в настоящем обсуждении, действие гравитации. Белый карлик – это совокупность в пространстве, и мы видим его именно так, в то время как космическая звезда является совокупностью во времени, поэтому мы не можем распознавать ее как совокупность.

Даже те контакты, которые происходят между материей и индивидуальными частицами космической материи (антиматерии), входящими в локальное окружение, не дают результатов, ожидавшихся на основании современной теории. Согласно современной мысли, существенным различием между материей и антиматерией считается обратный заряд. Полагают, что атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами. Далее предполагается, что антиатом обладает обратной структурой: отрицательно заряженным ядром, окруженным положительно заряженными электронами (позитронами). За этим следует дальнейшее допущение: действенный контакт между любой частицей и античастицей привел бы к уничтожению всех зарядов и превращению всех частиц в энергию излучения.

Это типичный пример результатов разделения в современной физической теории, позволяющих допущение в связи с одной областью применения и прямое противоречие этому допущению в связи с другой областью, и оба они пребывают под знаменем “современной физики”. Если общепринятая теория требует, чтобы при близком контакте противоположные заряды нейтрализовали друг друга, считается, что они это делают. Если это не увязывается с теорией, как в электрическом объяснении структуры материи, охотно допускается, что заряды приспосабливают свое поведение к требованиям теории и принимают устойчивые относительные положения вместо разрушения друг друга. В настоящем примере оба противоречащих друг другу допущения работают одновременно. Устойчивые заряды, которые почему-то не влияют друг на друга, “аннигилируются” другими зарядами, по-видимому, идентичными по природе. Мы находим: где бы реально ни существовали электрические заряды, при контакте противоположные заряды уничтожают друг друга.

Однако из этого не следует, что нейтрализация заряда эквивалентна аннигиляции. В реальной практике лишь одна из реакций между частицами и тем, что считается античастицами, следует теоретическому сценарию аннигиляции. Фактически, при контакте электрон и позитрон аннигилируют друг друга с возникновением противоположно направленных фотонов. В общепринятом смысле термина античастица протона – частица, эквивалентная протону во всех отношениях, кроме отрицательного заряда, - обнаружена, но контакт антипротона с протоном не создает аннигиляции частиц в энергию излучения. Бурсе и Моц сообщают: “Здесь ситуация не так проста, как при аннигиляции пары электрон-позитрон”.61 Конечно, не так проста. Взаимодействие этих частиц создает ассортимент недолговечных и неустойчивых частиц, существенно не отличающихся от тех, которые появляются в результате других высокоэнергетических взаимодействий. Как говорят эти авторы, в процессе “высвобождаются разные виды мезонов”. В свете новых результатов очевидно, что это не реакции аннигиляции, это реакции построения космического атома. Природу и характер таких реакций мы будем исследовать в главе 16.

Также сообщалось и об обнаружении антинейтрона, но свидетельство это косвенное. Довольно трудно примирить разные идеи по поводу того, каким должен быть антинейтрон, с концепцией переворота зарядов как существенного различия между частицей и античастицей. На основании гипотезы переворота заряда нейтральная частица вообще не должна иметь никаких “анти” форм. Конечно, те, кто отстаивает мнение, что “каждая частица имеет свою античастицу”, оправдывают это утверждение допущением, что каждая нейтральная частица имеет свою античастицу. В ныне принятом смысле термина это привело бы к существованию отдельного антинейтрона. В любом случае проблема нейтральных частиц – это еще одно положение, которое, как и в случае отсутствия аннигиляции в “реакциях аннигиляции”, подчеркивает неадекватность традиционной теории атомной структуры в связи с феноменом “антиматерии”.

Во Вселенной Движения атом не является электрической структурой. Как детально обсуждалось на предыдущих страницах, атом – это комбинация вращательных и вибрационных движений. В структурах материального типа скорость вращательных движений меньше единицы (скорости света), а скорость вибрационного движения больше единицы. В структурах космического типа отношения перевернуты. У них скорость вибрационного движения меньше единицы, а скорость вращательного движения больше единицы. Истинная “античастица” материальной частице или атому – это комбинация движений, в которой положительные смещения вращения и отрицательные смещения вибрации материальной структуры заменяются отрицательными смещениями вращения и положительными смещениями вибрации равной величины.

В одной из реакций, ныне приписываемой взаимной аннигиляции античастицы, действительно происходит нейтрализация смещений. В этом случае комбинация электронов и позитронов действительно аннигилируется; то есть, они превращаются в энергию излучения, и их существование как частиц класса вращения прекращается. На самом деле, в эту реакцию включаются два разных процесса. Первый: противоположно направленные заряды уничтожают друг друга, оставляя обе частицы в неизменном состоянии. Второй: их вращения М 0-0-1 и М 0-0-(1) комбинируются с 0-0-0, которое вообще не является действующим вращением. Проще говоря, мы могли бы описать второй процесс как выпрямление вращательного движения. Между двумя процессами имеется короткий интервал, и эффекты, приписанные “позитронию”, - гипотетической коротко живущей комбинации электрона и позитрона - по-видимому, происходят в период этого интервала.

Степень, в какой при контактах между античастицами, иными, чем электрон, и позитроном может действительно происходить аннигиляция, - еще не изучена. Если наблюдаемый антипротон действительно является настоящей античастицей протону, то есть, космическим протоном, тогда результат наблюдаемых контактов этих частиц достаточно определенно указывает на то, что аннигиляция ограничивается одномерными частицами. Если же наблюдаемый антипротон является просто материальным протоном с отрицательным зарядом - вероятность, не исключаемая на нынешней стадии исследования, - тогда наблюдаемые результаты взаимодействий относятся не к вопросу, а к ситуации, еще более неблагоприятной для аннигиляции. Препятствия на пути гарантированного контакта между соответствующими движениями, очевидно, возрастают с усложнением комбинации вращения, и весьма сомнительно, что в разных измерениях могут происходить необходимые синхронные контакты. Поэтому представляется, что заманчивая возможность получения энергии путем контакта между материей и антиматерией исключается не только как крупномасштабный процесс (из-за невозможности концентрации антиматерии в пространстве, как указывалось раньше), но и как единичный атомный процесс.

Ввиду того, что наша нынешняя цель – исследовать явления космического сектора Вселенной, доступные нашему наблюдению, наблюдаемые античастицы, являющиеся продуктами высокоэнергетических процессов в материальном секторе, относятся к делу лишь в той степени, в какой проливают свет на вид поведения, который можно ожидать от космических объектов, входящих в поле нашего наблюдения. Как указывалось раньше, некоторые из входящих объектов известны как результат случайных контактов по ходу нашего движения в трехмерном времени. Кроме того, имеются процессы (которые будут описываться позже), связанные с перебрасыванием существенных количеств материи из одного сектора в другой. Таким образом, часть материального сектора в наблюдаемой нами области подвергается непрерывному втеканию космической материи. Втекающие частицы этой материи можно определить как космические лучи.

Космические лучи – это частицы, входящие в локальные рамки отсчета из всех направлений с крайне высокими скоростями, в также разнообразие вторичных частиц, возникающих в результате событий, инициированных первичными частицами. Вторичные частицы включают некоторые обычные субатомные частицы материальной системы, такие как электроны и нейтрино, а также ряд переходных частиц с крайне коротким сроком жизни, начиная с 10-6 секунды. До открытия космических лучей последние были неизвестны, но создавались в результате высокоэнергетических процессов в ускорителях частиц.

В современной мысли первичные частицы рассматриваются как обычные материальные атомы. Доводы в пользу этого вывода можно суммировать следующим образом:

(1) Субатомные частицы исключаются, поскольку по той или иной причине все они не способны создавать наблюдаемые эффекты. Это значит: если они не принадлежат неизвестному классу частиц, тогда первичные космические лучи должны быть атомами.

(2) Массы атомов, составляющих первичные частицы нельзя определить на современной стадии развития инструментария и техник, но можно определить заряды индивидуальных частиц, И то, что они полностью ионизированы, указывает на атомные номера. На этом основании распределение элементов во входящих космических лучах приближается к оцененному распределению в наблюдаемой Вселенной в целом.

При отсутствии любой известной альтернативы этих доводов достаточно для признания вывода, что первичные частицы являются атомами обычных материальных элементов. Однако если возникает проблема достоверности, как это и должно быть при наличии альтернатив, ясно, что в эмпирических данных содержится много противоречий. Самые серьезные из них следующие:

(1) Скорости и энергии первичных субатомных частиц слишком велики, чтобы увязываться с их созданием посредством обычных физических процессов. Ни один известный процесс или даже убедительный умозрительный процесс, основанный на традиционной физике, не способен создавать энергии, приближающиеся к 1020 электрон-вольт. Как говорится в Британской Энциклопедии: “Как объяснить овладение такими энергиями – волнующая физическая и космологическая проблема”.

(2) За исключением некоторых относительно низкоэнергетических лучей, которые считаются появляющимися на Солнце, большинство первичных субатомных частиц обладают энергиями в диапазоне, указывающем на скорости, близкие к скорости света. Ввиду того, что перед наблюдениями, несомненно, происходит уменьшение скорости, на основании наблюдаемого свидетельства (то есть, отвергая любое чисто теоретическое ограничение) весьма возможно, что лучи, входящие в локальную окружающую среду, двигались со скоростью света. Это еще одно указание на их необычное происхождение.

(3) В то время как распределение элементов, выведенное из зарядов космических лучей, приближается к оцененному распределению в наблюдаемой Вселенной в целом, имеются и существенные различия. Например, пропорция атомов железа в космических лучах в 50 раз больше, чем в обычной материи. Сообщалось, что лития больше в 1000 раз (хотя какая-то часть лития может появляться как продукт распада). Поэтому космические лучи не могут быть обычной материей, извлеченной из общего резервуара и ускоренной до высоких скоростей каким-то неизвестным процессом. Должно быть, они появляются из какого-то необычного вида источника. В современной физической мысли аномалиям в “спектре заряда” космических лучей уделяется мало внимания потому, что они не поддаются никакому известному объяснению. Но значимость таких отклонений от обычного изобилия следовало осознать тогда, когда наблюдались первые признаки отклонений. Например, Хупер и Шарф (1958) заметили: “Избыток тяжелых ядер допускает необходимость пересмотра наших фундаментальных идей о происхождении первичного излучения”.62

(4) Все основные продукты первичных лучей обладают крайне коротким сроком жизни. Если до истечения этого срока они не повергаются столкновениям, они распадаются в полете на частицы меньшей массы и равного или более продолжительного срока жизни. Имеется много свидетельств, указывающих, что это распространяется и на первичные субатомные частицы. Например, в некоторых наблюдаемых событиях переходная частица покидает сцену на траектории движения первичных частиц и уносит с собой часть первичной энергии. Такие события интерпретируются так: это процессы, в которых первичные частицы распадаются на переходные частицы и продолжают свой путь. Существование значительного числа высоко энергетических пионов во входящем потоке частиц является еще одним доводом в пользу вышеизложенного. Распады первичных частиц будут создавать пионы с очень высокими энергиями. Оценено, что 15% входящих высокоэнергетических частиц являются пионами. Вывод, который логически можно сделать из наблюдений, таков: первичные субатомные частицы обладают той же общей природой, что и известные переходные частицы, а весь феномен космических лучей – это единый процесс, протекающий в виде ряда процессов распада. Это процесс, в котором атом со странными и необычными свойствами сначала превращается в похожие, но менее тяжелые частицы, а затем в продукты, совместимые с локальной окружающей средой.

Соображения, суммированные в предыдущих параграфах, указывают на то, что нынешнее объяснение природы первичных космических лучей некорректно. Они приводят к выводу, что первичные субатомные частицы не являются атомами материальных элементов, как считается сейчас, а представляют собой атомы особого вида, обладающие характеристиками, похожими на характеристики переходных частиц, которые создаются при каких-то необычных условиях, возникающих при вхождении в локальную среду на полной скорости света. Поскольку из теории мы знаем, что происходит непрерывное втекание космических атомов, являющихся атомами особого вида, которые, согласно теории, входят в наше окружение со скоростью света и подвергаются быстрому распаду по способу наблюдаемых переходных частиц, совпадение теоретических и наблюдаемых явлений почти самоочевидно.

Видной характеристикой результатов, полученных из развития следствий постулатов СТОВ, которые, при случае, мы упоминали несколько раз на предыдущих страницах, является то, что они на удивление просто решают давнишние и крайне трудные проблемы. Нигде это не проявляется очевиднее, чем в случае космических лучей, где вывод, что входящие частицы являются атомами из более высокоэнергетического сектора Вселенной, с замечательной легкостью проясняет многие ранее неподатливые проблемы.

Ответы на основные вопросы: Что такое космические лучи и откуда они приходят? появляются автоматически с помощью теоретического открытия сектора Вселенной, которому присущи объекты с наблюдаемыми свойствами космических лучей. Особые свойства, характеризующие составляющие космических лучей и отличающие их от составляющих совокупностей обычной материи, - естественно те, которые труднее всего объяснить на основании современных теорий, пытающихся свести их к материальной системе явлений. Но как только осознается существование космического (высокоэнергетического) сектора, объяснения практически очевидны.

Главные проблемы возникают в связи с энергией. Как констатировал У. Г. Д. Свон: “В современных условиях ни один кусочек материи, ни в какой форме не может содержать достаточно энергии, чтобы обеспечивать энергии космических лучей для своих частиц”.63 Но это лишь одна стороны проблемы с энергией. Проблемы общей вовлеченной энергии намного шире.

“Если космические лучи движутся по прямым линиям, как это делает свет звезд, и обладают той же энергетической плотностью, что и свет звезд, тогда запасы энергии должны быть одинаковыми. Представляется невероятным обнаружить в космическом излучении так много энергии”.64 (Л. Дэвис)

И вновь мы сталкиваемся с отстаиваемой точкой зрения “нет другого способа”, которая используется для оправдания многих несостоятельных теорий и допущений современной науки. И вновь развитие СТОВ демонстрирует, что “способ постижения” существует. Но поскольку физики космических лучей ограничены горизонтами традиционных базовых идей, они не способны рассматривать наблюдаемые энергии на любом прямом основании. Поэтому во избежание трудности, отмеченной Дэвисом, они вынуждены изобретать экзотические гипотетические механизмы для ускорения космических лучей от относительно низких энергий, имеющихся в материальном секторе, до реально наблюдаемых высоких уровней, и одинаково “натянутые” процессы.

Существование другой половины Вселенной, в которой превалирующими скоростями являются скорости больше скорости света и соответственно большие энергии единиц массы, решает оба аспекта энергетической проблемы. В материальном секторе (который будет детально исследоваться в томе 2), имеются наблюдаемые взрывные процессы, которые и создают ускорение больших количеств материи до скоростей выше скорости света. Самые энергетические порции продуктов взрывов впрыскиваются в космический сектор - регион движения во времени. Исходя из общего обратного отношения между пространством и временем, можно сделать вывод, что те же процессы работают и в космическом секторе. Они впрыскивают большое количество космической материи в материальный сектор. Это и есть та материя, которую мы наблюдаем в виде космических лучей.

Характеристики взаимных обменов (они будут объясняться в томе 2) объясняют, почему распределение элементов в космических лучах отличается от оценочного среднего распределения в наблюдаемой физической Вселенной. Будет показано, что пропорция более тяжелых элементов увеличивается с возрастом материи. Далее будет продемонстрировано, что материя, впрыскиваемая из одного сектора Вселенной в другой, состоит преимущественно из самой старой (или самой продвинутой) материи в секторе возникновения. Поэтому космические лучи не являются представителями космической материи в целом; они представляют космическую материю, соответствующую самой старой материи в материальном секторе. Изотропное распределение входящих лучей – необходимый результат входа из области движения во времени. И пространственное положение входа, и направление движения частицы после входа определяются случайно, поскольку контакт движения во времени и движения в пространстве полностью скалярный.

Определение космических лучей как атомов космических элементов было ясно с начала развития СТОВ. Как констатировалось раньше, доступное свидетельство указывает на то, что так называемые “лучи” должны быть атомами. С другой стороны, их наблюдаемые свойства отличаются от свойств атомов обычной материи. Тогда естественный вывод из этих фактов таков: атомы космических лучей являются атомами какого-то другого вида. Традиционная наука не может принять такой ответ потому, что не имеет места, куда можно поместить вид указанных атомов. Поэтому физики вынуждены приходить к выводу, что космические атомы являются обычными атомами, которые по какой-то неизвестной причине обладают необычными свойствами. Базовые постулаты СТОВ требуют существования вида атома, обратного (сопряженного) материальному атому, обладающего характеристиками (если рассматривается в материальном секторе), обнаруженными в космических лучах.

В этой связи следует заметить: концепция антиматерии, традиционной альтернативы обратной материи, требующейся постулатами СТОВ, не может относиться к космическим лучам потому, что теоретически взаимодействие материи и антиматерии приводит к аннигиляции обеих субстанций, а не к созданию частиц и других феноменов, реально наблюдающихся при взаимодействии космических лучей.

На ранних стадиях развития СТОВ мы можем уделить космическим лучам лишь ограниченное количество времени, поскольку чтобы подтвердить статус теории как теории общих применений, требуется изучить большое количество областей физики. Первое издание включало рассмотрение природы и происхождения первичных лучей, объяснение вида модификаций, которым подвергаются частицы в материальном окружении, и общее описание  модификаций или процесса распада. С того времени в этой области достигнуты значительные успехи в эксперименте и теории, и сейчас можно существенно расширить предварительное описание.

Расширение теории в области космических лучей, произошедшее за двадцать лет после публикации первого издания, успешно иллюстрирует то, что вошло в развитие теоретической системы из фундаментальных постулатов. Основные факты - определение космических лучей, место происхождения, и причина огромных энергий - почти самоочевидны сразу же, как только осознается обратное отношение между пространством и временем. Но не следует ожидать, что понимание основных фактов сразу же прояснит все множество вопросов, возникающих по ходу развития деталей теоретической структуры. Они могут быть выведены из основ Системы Теории, но не появятся автоматически.

Если теория развивается путем умозаключений из одного набора допущений, что справедливо для СТОВ, не должно быть много случаев получения неверных ответов, если прочны теоретические основы и если логическому развитию уделяется достаточное внимание. За последние двадцать лет дополнительного изучения выяснилось, что лишь немногие выводы, изложенные в первом издании, оказались неправомочными. Но было бы нереально ожидать, что первое исследование физического сектора посредством абсолютно нового подхода точно определит все значимые характеристики явлений в этом секторе. Поэтому неизбежно, что многие первые выводы окажутся неполными. И СТОВ - не исключение.

Объяснение распада космического луча, представленное в следующей главе, в основном будет тем же, что и в первом издании. Однако развитие теоретической структуры в последующие годы привело к выходу на свет многих необходимых следствий постулатов СТОВ, затрагивающих процесс распада и вносящих вклад в более полное понимание событий распада. Новая информация включает такие положения как существование зоны перехода, двумерную природу движения в этой зоне, существование безмассовой формы нейтрона, природу ограничения срока жизни космических частиц. Обладая преимуществом дополнительного теоретического знания и существенным увеличением объема доступной эмпирической информации, можно точнее определить следствие распада. Тем не менее, изложение в главе 15 не будет новым объяснением феномена; это то же объяснение только в более законченной форме.

 

Глава 15

Распад космических лучей

На основании информации, представленной в главе 14, в общих терминах мы можем описывать космические лучи как космические атомы и частицы. Они входят в материальное окружение со скоростью света, в случайные пространственные положения и в случайных направлениях. Они являются составляющими космического сектора Вселенной, какими они и предстают, весьма скоротечно, нашему наблюдению. Сейчас мы будем исследовать, что происходит с этими объектами после прихода в материальный сектор.

На самых ранних стадиях наблюдения, космические частицы известны как первичные космические лучи. Как указывали многие наблюдатели, нет уверенности в том, что они являются исходными лучами, поскольку процесс распада, возможно, уже начался до того, как наблюдаются первичные лучи. Теория указывает, что это, конечно, справедливо, поскольку первичные лучи содержат значительный процент частиц, являющихся скорее продуктами распада, чем обычными составляющими исходных лучей. В последующем обсуждении мы будем придерживаться обычной практики, и рассматривать наблюдаемые входящие частицы как первичные лучи. Следует понять: это не значит, что наблюдаемые первичные частицы идентичны частицам, изначально пересекшим границу в материальный сектор.

Поскольку космические лучи входят в материальный сектор из региона, в котором превалируют скорости больше единицы, эти частицы входят со скоростью света. Именно уменьшение скорости со скорости больше единицы до скорости меньше единицы представляет собой вход в материальный сектор, но разделительная линия между космическим и материальным сектором – это единица скорости во всех трех скалярных измерениях. Поэтому наблюдаемая скорость первичных частиц остается близкой к единице даже после того, как общая скорость в некоторой степени уменьшилась. Это подтверждает ранее установленный факт, что наблюдаемые скорости входящих частиц близки к скорости света.

Ввиду того, что эти скорости и соответствующие кинетические энергии намного превышают обычные скорости и энергии материального сектора, передача избыточной кинетической энергии в окружающую среду начинается сразу же после входа. Действие гравитационных и электромагнитных сил, которому подвергается космический атом сразу же после пересечения границы, уменьшает энергию. Контакт с материальными частицами тоже является важным фактором, и дальнейшая потеря энергии происходит в связи с имеющим место уменьшением внутренней энергии.

Космические атомы с максимальным энергетическим содержанием (кинетическим эквивалентом) – это самые изобильные космические элементы к–водород и к–гелий. Поэтому основные составляющие космических лучей, космические элементы с низким атомным номером, входят в материальные рамки отсчета не только со скоростями, намного выше, чтобы совмещаться с материальным окружением, но и в форме структур, чье внутреннее энергетическое содержание (смещение вращения) тоже слишком велико. Эти элементы вынуждены терять энергию вращения и кинетическую энергию еще до того, как смогут принять формы, в которых проявятся в материальных явлениях. Необходимая потеря энергии вращения атомных структур сопровождается выбросом частиц надлежащей природы. Требуется, чтобы за короткие интервалы времени в атомных структурах совершалось какое-то приспособление. Принципы вероятности заверяют, что приспособление будет направлено в сторону большей стабильности. В материальном окружении это значит уменьшение избыточной энергии вращения.

На современной стадии развития теории представляется, что ограничение сроков жизни космических элементов до чрезвычайно коротких интервалов происходит потому, что вращение в космической структуре происходит со скоростью больше единицы. Следовательно, такая структура движется вовнутрь во времени, а не в пространстве. Отсюда, она может существовать в пространственной системе отсчета лишь одну единицу времени. Если она поступательно движется со скоростью больше единицы во всех скалярных направлениях, а это справедливо для большинства космических атомов, случайно сталкивающихся с нашим движением во времени, она уходит из последовательности времени материального сектора и исчезает. Но этот вариант недоступен космическим атомам, движущимся со скоростью меньше единицы; они делятся на две или более частиц, каждая из которых обладает своим сроком жизни.

В главе 13, в связи с макроскопическими физическими явлениями, естественная единица времени оценивалась как 1,521 x 10-16. Одни наблюдаемые частицы имеют срок жизни, близкий к этому, срок жизни других пребывает в диапазоне от около 10-16 секунд до около 10-24 секунд. Как будет показано позже, величина отклонения от единицы времени соотносится с движением частиц в пространстве. Но точная природа коэффициента модификации еще не определена. Поэтому сейчас мы будем рассматривать его как модификатор единицы времени, подобный межрегиональному отношению, модифицирующий единицу пространства в связи с регионом времени.

Ограниченный срок жизни, к которому относятся предыдущие комментарии, - это предел при нулевой скорости. На более высоких скоростях срок жизни, измеряемый традиционными часами, увеличивается в соответствии с отношениями, выраженными в уравнениях Лоренца, которые, как отмечалось раньше, одинаково относятся как к СТОВ, так и к традиционной физике. Объяснение более долгой жизни, чем мы выводим из теории, таково: частица может оставаться невредимой в пространственной системе отсчета до тех пор, пока она пребывает в той же единице времени. Но объект, движущийся со скоростью света, пребывает в той же единице времени (в естественной системе, контрольной) постоянно, и такой объект может существовать неопределенно долго в любой системе отсчета. Сокращение срока жизни при более низких скоростях следует математическому паттерну, выведенному Лоренцем. Из вышеизложенного очевидно, что первичные космические лучи, движущиеся со скоростью света, не обязательно входят в материальный сектор в непосредственной близости от нас. Лучи, которые мы наблюдаем, могли войти везде в межзвездном или даже в межгалактическом пространстве.

Как указывалось в первом издании, последовательные шаги процесса распада, которому подвергаются космические атомы после входа, состоят из испускания смещения вращения в форме безмассовых частиц. Этот процесс продолжается до тех пор, пока остаточный, космический элемент не достигает состояния, в котором может преобразовываться в материальную структуру. Конечно, ничто физическое не может преобразовываться в нечто другое. Такое возможно только в мира магии. Прибавление или удаление какой-то составляющей может изменять физическую сущность; но она может преобразовываться только в какую-то другую форму той же вещи, что подразумевается самим термином. В случае элементов преобразование возможно посредством определенного отношения между нулевыми точками пространства и времени.

Как объяснялось в главе 12, разница между положительным смещением скорости x и соответствующим отрицательным смещением скорости, равная 8 – x (или 4 – x в случае двумерного движения), - просто вопрос ориентации движения по отношению к нулевым точкам пространства и времени. Все вращательные движения материальных атомов и частиц ориентированы на основании пространственного (положительного) нуля, потому что, как отмечалось раньше, именно такая ориентация позволяет комбинации вращения оставаться в фиксированной пространственной системе отсчета. Аналогично, космические атомы и частицы ориентированы на основании временного (отрицательного) нуля и, потому, могут оставаться постоянными в фиксированной временной системе отсчета, обладая лишь переходным существованием в пространственной системе. Единственная разница между движением с положительным смещением скорости x и отрицательным смещением скорости 8 – x (или 4 – x) состоит в ориентации скалярного направления. То есть, одно может превращаться в другое посредством инверсии направления.

Например, если отрицательные магнитные смещения атомов космического гелия (2)-(1)-0 заменяются положительными величинами 4 – x, это переворачивает скалярные направления вращений без изменения природы или величины любых компонентов вращения. Следовательно, результат - атом материального элемента аргона 2-3-0 (или 3-2-0 в нашем обычном обозначении), - это тот же физический объект, что и атом космического гелия. Просто он движется в другом скалярном направлении. Превращение атома космического гелия в аргон – это ничто иное, как переход в другую форму одной и той же вещи. Это физическая возможность, которой можно достичь при надлежащих условиях и с помощью надлежащих процессов.

Каждый атом космического или материального типа, в котором смещения скорости не превышают 3-х в любом из магнитных измерений или 7-ми в электрическом измерении, обладает эквивалентной противоположно направленной структурой. Это иллюстрируется в нижеприведенной таблице эквивалентов космических и материальных элементов инертных газов - элементов без эффективного смещения в электрическом измерении.

 

Космическая система

Материальная система

к-гелий (2)-(1)-0 2-3-0 аргон
к-неон (2)-(2)-0 2-2-0 неон
к-аргон (3)-(2)-0 1-2-0 гелий
к-криптон (3)-(3)-0 1-1-0 2 нейтрона

 

Из этого не следует, что прямое превращение атома такого элемента в эквивалентную обратную структуру возможно всегда. Напротив, это редкая возможность. Например, чтобы превратить атом космического гелия прямо в аргон, потребовался бы одновременный переворот вращения сразу в двух магнитных измерениях, в то же время должны быть получены откуда-то еще требующиеся атому аргона около 40 единиц массы. Атом к-гелия не может удовлетворять этим требованиям, поэтому в конце надлежащей единицы времени, когда что-то должно совершаться, оно совершает то, что может; то есть, испускает безмассовую частицу. Этот процесс переносит положительное смещение вращения и переносит оставшийся космически атом в ряд элементов с более высоким космическим атомным номером – эквивалентов элементов с более низким материальным атомным номером.

Этот процесс продолжается до тех пор, пока оставшийся космический атом не становится к-криптоном, каждая вращающаяся система которого эквивалентна нейтрону. Таким способом могут удовлетворяться требования преобразования, поскольку инверсия каждого вращения включает только одну эффективную единицу; дополнительной массы не требуется потому, что результатом преобразования является бесмассовый нейтрон. Скалярные направления движения к-криптона переворачиваются, и в материальной системе занимают свои места два безмассовых нейтрона. Вопрос о том, что дальше происходит с этими частицами, будет обсуждаться в главе 17.

Общая природа распада космических лучей, описанная в предыдущих параграфах, была ясна с самого начала исследования роли космических лучей в теоретической Вселенной СТОВ. Отсюда очевидно, что испускания во время процесса распада должны быть положительными смещениями вращения, чтобы в материальном окружении космические атомы модифицировались в направлении большей устойчивости и встраивались в тот уровень, где возможно преобразование. В первом издании эти испускания обсуждались в терминах нейтронов и эквивалентов нейтронов, хотя отмечалось, что, по крайней мере, в земных условиях они должны быть безмассовыми. В этих событиях передача массы возможна потому, что космические атомы не обладают реальной массой. Масса, определенная их поведением в наблюдаемых реакциях, - это просто эквивалент массы космической (перевернутой) массы, которой реально обладают атомы космических элементов. Эти атомы должны испускать положительное магнитное смещение вращения, а это может иметь место лишь с помощью среды безмассовых частиц. Вывод, сделанный на ранней стадии исследования, таков: при испускании, несущие частицы должны быть парами нейтрино и позитронов (вместе их вращение эквивалентно нейтронам, но они безмассовые), а не нейтронов наблюдаемого типа. Последние открытия, что нейтрон существует в безмассовой форме, разрешают это затруднение, поскольку очевидно, что испускаемые частицы являются безмассовыми нейтронами.

Успех, достигнутый в наблюдении и теории, позволил точнее и детальнее определить ход процесса распада, чем в первом издании. Поскольку все характеристики космического сектора Вселенной идентичны соответствующим характеристикам материального сектора (за исключением того, что пространство и время взаимозаменяемы), материя, ускоренная до высоких скоростей путем космических взрывов астрономической величины, включает все компоненты космической материи - субатомные частицы и атомы всех элементов. Но чтобы постоянно ускоряться до единицы в трех измерениях, частица должна преодолевать полную единицу сопротивления во всех трех измерениях. Следовательно, единственные частицы, способные ускоряться до скоростей ухода, являются двойными вращающимися системами - атомами. При взаимном обмене между космическим и материальным сектором единичная частица – это атом с атомным номером 1 и массой, равной массе двух изотопов водорода (дейтерий). Масса одного изотопа водорода не рассматривается как полноразмерная единица, но у нее отсутствует лишь эквивалент космического безмассового нейтрона; это восполняется испусканием бесмассового нейтрона материального типа. Подвергаясь ускорению в результате мощного взрыва, атом Н1 испускает такую частицу и обретает статус Н2.

Субатомные частицы не способны ускоряться до скорости ухода. Они либо безмассовы, либо легко разделяются на безмассовые компоненты. Достигая пограничных скоростей, они принимают безмассовые формы и устраняют ускорение. Полное отсутствие субатомных частиц в космических лучах, возникающее за счет неспособности достижения скорости ухода, не осознается потому, что единично заряженные частицы ошибочно определяются как протоны. А космические частицы распада – в традиционной терминологии мезоны – рассматриваются как определенный вид субатомного статуса. Но отсутствие электронов бросается в глаза и усложняет характеристику явления распада космического луча. Это оказывает жесткое давление на теории, пытающиеся рассматривать возникновение лучей.

“Эффект, настолько огромный, что полностью исключает высоко энергетические электроны из спектра Земли, должен недвусмысленно рассматриваться любой успешной теорией происхождения космического излучения”. (Т. М. Донахью)65 

Сейчас доступно недвусмысленное объяснение. В исходных космических лучах нет никаких субатомных частиц потому, что эти частицы не способны ускоряться до высоких скоростей инверсии для входа в материальный сектор.

Космическое свойство инверсивной массы наблюдается в материальном секторе как масса инверсивной величины. Если на шкале атомного номера материальный атом обладает массой Z единиц, соответствующий космический атом обладает инверсивной массой Z единиц, которая наблюдается в материальном секторе как масса, равная 1/ Z единиц. Массы частиц, которые нас интересуют, традиционно выражаются в терминах миллиона электрон-вольт (мега электрон-вольт). Одна атомная единица массы эквивалентна 931,152 мэв. Атомный номер эквивалентен двойной величине или 1862,30 мэв. Тогда, первичная масса вращения элемента с атомным номером Z равна 1862,30 Z мэв. Космический элемент с атомным номером Z – это 1862,30/ Z мэв. Если атомная масса m выражается в терминах атомного веса, она становится 3724,61/m мэв.

Вот как сейчас обстоят дела: ни теоретические вычисления, ни наблюдения масс космических элементов выше водорода в космических атомных сериях недостаточно точны для оправдания приема в расчет вторичной массы. Поэтому теоретическое обсуждение масс этих элементов относится только к первичной массе, не смотря на небольшую модификацию за счет эффекта вторичной массы. По тем же причинам вычисленные и наблюдаемые величины в последующих сравнениях будут устанавливаться в терминах целых чисел мэв. В случае водорода было сделано исключение, потому что вторичная масса этого элемента при обычных условиях относительно велика, а вероятность, что она будет меняться в результате изменений окружающих условий, относительно мала. Поскольку масса материального атома Н2 составляет 1,007405 на атомной числовой шкале, масса космического атома Н2 - это величина, обратная этой цифре или 0,99265 единиц. Это эквивалент 1848,61 мэв.

Следует осознать, что комбинации движений составляющих атом элементов (и материальных, и космических) способны обретать дополнительные компоненты разных видов движения, каждая единица которых изменяет массу атома на одну атомную единицу веса. Детальное рассмотрение нового вида движения, которое мы будем называть гравитационным изменением, удобнее отложить до тех пор, прока мы не будем готовы обсуждать весь класс движений, к которому оно принадлежит. В нынешних целях следует отметить: каждый материальный элемент с атомным номером Z существует в ряде разных форм или изотопов, каждый из которых обладает атомным весом 2 Z + G, где G – число гравитационных изменений. Нормальная масса соответствующих космических изотопов – величина, обратная 2 Z + G, но когда космические атомы входят в материальное окружение, они способны прибавлять гравитационные измерения материального (положительного) вида к космическим комбинациям движений (включая гравитационные изменения космического (отрицательного) вида, если таковые имеются). Каждый заряд материального вида прибавляет к изотопной массе космического атома одну единицу атомного веса или 931,15 мэв.

В первом издании говорилось, что входящие космические лучи состоят в основном из к-водорода. Но в то время не было никаких наблюдений, указывающих на наличие любых частиц космических лучей с массой водорода, расширения теоретического развития по вопросам скалярного движения в двух измерениях, и не были определены сроки жизни космических атомов. Поэтому точный теоретический статус входящих атомов к-водорода был неясен. На основании того, что известными космическими элементами ряда инертных газов были “мезоны”, пришли к выводу, что первичные атомы водорода должны “сдираться” со своего одномерного вращения и ослабляться до двумерного условия (инертного газа) почти сразу же после пересечения пограничной скорости. Однако тем временем, исследователям удалось расширить наблюдения на первые стадии хода процесса распада. Недавно они открыли короткоживущую частицу с массой 3695 мэв.

Определение частицы “пси” 3695 как “космического дейтрона с двумя материальными изотопными изменениями”66 Рональдом У. Сацем было важным успехом, открывшим дверь к прояснению статуса космического водорода. Это позволяет заполнить пробел и проследить все движение космического атома от входа в материальный сектор в форме космического водорода (к-Н2) до конечного преобразования в материальные частицы.

По причинам, которые будут объясняться в томе 2, в нейтральной точке, входя в материальный сектор Вселенной, космический атом обладает действующим поступательным движением в двух из трех скалярных направлений. Земные условия, в которые входят наблюдаемые космические атомы, благоприятны для обретения гравитационных изменений материального типа. Поэтому каждое из двух измерений движения прибавляет заряд. Два изменения, совершаемые атомом к-Н2, прибавляют 1862,30 мэв к 1848,61 мэв масс эквивалента космической массы, доводя общую массу первой из теоретических частиц космических лучей до 3710,91 мэв. Масса вновь открытой пси частицы 3695 мэв. Учитывая многие неясности, входящие в наблюдения, ее можно рассматривать как соответствующую теоретической величине.

Как уже упоминалось, сроки жизни частиц соотносятся с измерениями движений в пространстве, которые обретают частицы, - поступательным движением и гравитационными изменениями. Поскольку теоретическая ситуация еще не прояснилась, эмпирически мы находим, что срок жизни частицы с двумя измерениями скалярного движения в пространстве и без гравитационного изменения составляет около 10-16 секунд - приблизительно естественную единицу времени. Каждое измерение движения модифицирует единицу времени в связи с жизнью частицы приблизительно на 10-8, а каждое гравитационное изменение модифицирует единицу на 10-2. На этом основании ниже приводятся следующие приблизительные сроки жизни:

 

Измерения Заряды Жизнь (сек) Измерения Заряды Жизнь (сек)
           
3 0 10-24 1 l 10-10
2 2 10-20 1 0 10-8
2 0 10-16

 

 

Зафиксированный срок жизни пси частицы 3695 - около 10-20 секунд, что согласуется с теоретическим определением измерений движения, на котором основано вычисление массы.

Общий процесс распада, описанный на предыдущих страницах, указывает, что к-Н2 должен подвергаться испусканию положительного смещения вращения, превращающего его в к-Н3. Из выражения 3724,61/m мы получаем 1242 мэв как массу вращения к-Н3, к которому прибавляем массу двух гравитационных изменений 3104 мэв. Наблюдаемая частица 3695 распадается на другую пси частицу с зафиксированной массой 3105 мэв и сроком жизни приблизительно 10-20 секунд. Вторая частица явно определяется как атом к-Н3. Таким образом, наблюдаемые массы, сроки жизни и паттерн распада подтверждают базовое определение частицы к-водорода, данное Сацем.

Другой распад того же вида создавал бы к-Н4, и возможно, что случайно формируются частицы этого состава. Бесспорно, в продуктах космического луча может появиться любой космический атом между к-водородом и к-криптоном. Но вероятности благоволят определенным конкретным космическим элементам; они являются продуктами – обычными результатами распада, которые мы сейчас исследуем. В материальном окружении скорости космических лучей и продуктов их распада быстро уменьшаются. И времени распада к-Н3, происходящего за счет дополнительной потери энергии в процессе распада, обычно достаточно для падения скорости космических остатков до скорости меньше единицы. Последующее устранение движения во втором скалярном измерении выливается в двойной распад, прибавляющий к космическому атому вес двух атомных единиц. Результат – к-Li-5

Дальнейшие увеличения обратной массы остаточного космического атома посредством последовательных прибавлений атомного веса индивидуальной единицы возможны, но вероятности благоприятствуют большим шагам, поскольку материальный эквивалент приращения космических единиц продолжает уменьшаться. Таким образом, за приращением одной единицы в каждом из двух шагов, от к-Н3 до к-Li-5, следуют серии приращений, на одну единицу атомного веса больше в каждом последовательном распаде, за исключением шага между к-N14 и к-Ne20, где увеличение размера предыдущего приращения составляет две единицы.

На этом основании за двумя 1-единичными приращениями, создающими к-Li-5, следуют 2-единичное приращение до к-Be7, 3-единичное приращение до к-B10, 4-единичное приращение до к-N14 и 6-единичное приращение до к-Ne20. Эти продукты распада не способны сохранять два гравитационных изменения предшественников, но удерживают одно из изменений. И все космические элементы, определенные как члены этого раздела следствий распада, обладают массами, включающими гравитационное приращение 931,15 и базовый эквивалент массы космического элемента – 1862,30/Z мэв. Определенный срок жизни космического атома с одним гравитационным изменением после падения в область одномерного движения составляет около 10-10 секунд. Эти теоретические массы и сроки жизни согласуются с наблюдаемыми свойствами класса переходных частиц космических лучей, известных как гипероны, что указывается в нижеприведенной таблице:

 

Масса

Элемент Частица Вычисленная Наблюдаемая Срок жизни
к-Li5 омега 1676 1673 1,30 x l0-10
к-B10 кси 1304 1321 1,67 x l0-10
к-N14 сигма 1197 1197 1,48 x l0-10
к-Ne20 лямбда 1117 1116 2,52 x l0-10

 

Приведенные массы – это массы отрицательно заряженных частиц. В контексте СТОВ еще не изучены положительные электрические заряды и другие переменные факторы, вводящие “тонкую структуру” в числовые величины свойств частиц.

Наблюдаемый паттерн распада пребывает в согласии с теорией, если нас интересует общее направление; то есть, все члены серий распадаются так, что в результате образуется к-неон. Однако еще не известно, всегда ли распад проходит через все стадии, определенные нормальной последовательностью, или последовательность подвергается модификации посредством либо опускания одного или более шагов, либо изменения величины испусканий смещения времени. Например, в таблице не приводится атом с-Be7 с массой 1463 мэв, потому что его отождествление с наблюдаемой частицей с массой 1470 мэв довольно неопределенно. Это не мешает его определению как продукта конечного распада. В этой связи можно заметить, что омега частица (к-Li5) была обнаружена лишь в результате интенсивного поиска, стимулированного теоретическим предсказанием. Однако тот факт, что последние три члена серий гипериона (открытые первыми и лучше известные) отделены только одним шагом распада, допускает существование небольшого отклонения от нормальной последовательности в тех случаях, когда вовлечена вся область распада, от к-He до к-Ne.

Когда на последующей стадии развития теории мы будем рассматривать свойства гравитационных изменений, мы обнаружим, что стабильность изменений является функцией атомного номера. Математическое выражение этого отношения, которое мы будем выводить из теории, указывает, что предел стабильности для двойного гравитационного изменения в земных условиях пребывает между материальными эквивалентами к-Не3 и к-Li-5. Это объясняет ранее упомянутый факт, что к-Li-5 и элементы выше него в космических сериях не способны сохранять два гравитационных изменения. Но центр зоны стабильности для этих элементов ближе к изотопу +1 (одному гравитационному изменению), чем к нулевому изотопу (базовому отношению). По этой причине все они одно (гравитационно) заряжены, как указывалось в предыдущем обсуждении. Начиная с к-Si27 и выше в космических сериях, центр зоны стабильности ближе к нулевому изотопу, и эти элементы не несут никаких гравитационных изменений.

Без гравитационного заряда масса к-Si27 - продукта распада, возникающего в результате 7-единичного прибавления к к-Ne20, составляет 137,95 мэв, а срок жизни составляет всего около 10-8 секунд. Соответствующая наблюдаемая частица - пион, с измеряемой массой 139,57 мэв и сроком жизни 2,602 x 10-8 секунд.

Часто сообщается о том, что пионы как продукты наблюдаемых событий космических лучей инициируются первичными субатомными частицами. Как мы увидим в следующей главе, такие продукты вероятнее всего появляются там, где имеется интенсивный контакт некоего вида с высвобождением большого количества энергии. Непосредственное создание пионов при распаде не согласуется с паттерном распада, выведенным из теории. Однако видимое прямое создание понятно, если принимаются во внимание относительные сроки жизни пиона и продуктов раннего распада. Нет причин полагать, что нормальный распад в полете приведет к какому-либо изменению направления. Выброс безмассовых частиц позаботится о сохранении требований без необходимости модификации направления. Поскольку весь процесс распада вплоть до производства пиона занимает лишь очень короткое время по сравнению со сроком жизни самого пиона, непохоже, что обычные методы наблюдения не смогут отличить пион от космической частицы, в полете подвергающейся полному распаду до статуса пиона.

Например, в ситуации, упомянутой в главе 14, когда пион, по-видимому, покидает сцену во время движения первичных субатомных частиц и уносит массу первичной энергии, и приводящей к выводу, что первичные субатомные частицы распадаются прямо на пион, в наблюдениях нет ничего такого, что бы ни совпадало с теоретическим выводом. Выводом, что во время короткого интервала в начале движения, приписываемого пиону, космическая частица действительно проходила через предыдущие шаги в последовательности распада.

Следующее событие в последовательности распада, распада пиона, включает 8-единичное приращение до к-Ar35. И вновь, устойчивая форма – нулевой изотоп. Это приводит к массе 106,42 мэв и теоретическому сроку жизни, равному сроку жизни пиона. Наблюдаемая частица – мюон, с массой 105,66 мэв, образованный распадом пиона, что и требуется теорией.

И распад до к-Si27 (пиона) и последующий распад до к-Ar35 (мюона) продолжает тот же паттерн постоянного 1-единичного увеличения в приросте космической массы в каждом последовательном событии, которое происходит на ранних шагах распада. Но ввиду того, что к-аргон эквивалентен гелию, который с материальной точки зрения является лишь одним шагом от нейтрона, в свою очередь, являющегося конечным продуктом процесса распада, следующий выброс положительного смещения переносит космический атом к конечной космической структуре к-криптону. Каждая из двух вращающихся систем атома к-криптона по вращению эквивалентна нейтрону и превращается в эту частицу. Поскольку к-криптон безмассовый (то есть, его наблюдаемая масса – это масс эквивалент инверсивной массы космического сектора), продуктами преобразования являются безмассовые нейтроны или их эквиваленты – пары нейтрино и позитронов. Некоторые аспекты этого процесса преобразования будет обсуждаться в главе 17.

В отличие от событий распада, включающих изменения в атомной структуре и поэтому не происходящих до тех пор, пока должны, преобразование вращений к-криптона в бесмассовые нейтроны – это изменение скалярного направления для приспособления к новому окружению; оно происходит, как только может происходить. Следовательно, как таковой, атом криптона обладает нулевым сроком жизни. Как только из к-аргона происходит выброс частиц, начинается преобразование в безмассовые нейтроны. В свете отсутствия появления к-криптона явный срок жизни к-аргона – мюона - составляет сумму его собственного срока жизни и преобразование времени. Величина, полученная из наблюдений, составляет 2,20 x 10-6 секунд. Теоретическое объяснение этой величины еще не доступно; но, возможно, значимо то, что разница между ней и сроком жизни незаряженной частицы, движущейся в одном измерении (около 10-8 секунд) приблизительно такова, что ассоциируется с гравитационным изменением.

Отсутствие атома к-криптона в процессе распада происходит не за счет какой-то необычной нестабильности самого космического атома, а благодаря предпочтительности альтернативного скалярного направления, превалирующего в материальном окружении. В обратном процессе, когда предпочтительность направления благоприятствует атому к-криптона над нейтронной альтернативой, оно играет важную роль, что мы увидим в главе 16.

В тех случаях, когда входящий космический атом не является нормальным следствием процесса распада, в одном или двух событиях распада он испускает достаточное количество положительного смещения для достижения одного из положений в этой последовательности; после чего следует обычному ходу так же, как продукты распада космического водорода. Однако в низко энергетическом окружении более тяжелые элементы пребывают выше предела стабильности для двух гравитационных изменений. Поэтому они не формируют структур, аналогичных пси частицам. Это увеличивает вероятность того, что какие-то продукты распада, обычно несущие одно гравитационное изменение, будут случайно обнаружены в незаряженном условии. Один допустимый заряд привел бы к асимметричной структуре в период, когда скорость частиц пребывает в двумерной области. И если они наблюдаются на этой стадии, похоже, что они не заряжены (гравитационно). Срок жизни незаряженной частицы, движущейся в двух измерениях, составляет приблизительно одну естественную единицу времени или около 10-16 секунд. Такой срок жизни – самое явное указание на то, что наблюдаемая частица пребывает на ранней стадии процесса распада.

Например, частица “эта” с наблюдаемой массой 549 мэв и сроком жизни 0,25 x 10-16 секунд – по-видимому, гравитационно не заряженный атом к-Be7, который теоретически обладает массой 532 мэв. Более сомнительное определение относится к частице “ро” - к-Li-5. В этом случае теоретическая масса составляет 745 мэв, а наблюдаемые величины пребывают в диапазоне от 759 до 770, причем более поздние измерения - самые высокие. Сообщается, что срок жизни ро составляет около 110-23 секунд, но этого слишком мало, чтобы быть временем распада. Очевидно, это время фрагментации - концепции, которая будет объясняться в связи с обсуждением создания частиц в ускорителях. И к-Li-5, и к-Be7 являются обычным следствием распада - фактом, подкрепляющим предыдущие определения. В следующей главе будут рассматриваться наблюдения частиц, пребывающих вне обычной последовательности распада.

Если в сериях космического атома входящий космический атом находится выше к-криптона, так что не может войти в нормальную последовательность распада как элементы с более низким атомным номером, он вынужден делиться на части в конце надлежащей единицы времени. И поскольку он не может испускать безмассовые нейтроны, как это делают более легкие атомы, он фрагментируется на меньшие единицы, которые затем следуют нормальному ходу распада.

 

 

Глава 16


Дата добавления: 2018-09-20; просмотров: 261; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!