Как устроено мироздание: общая теория относительности



 

В создании общей теории относительности не последнюю роль сыграли открытия немецкого математика Германа Минковского. Он предложил геометрическое описание четырехмерной модели пространства‑времени, которая была использована Эйнштейном. Эта модель получила название пространства Минковского.

Представить пространство, состоящее из четырех измерений – длина, ширина, глубина и время, довольно сложно. Математики оперируют формулами и изображениями на плоскости, которые являются лишь отображениями этого пространства. Любое действие можно изобразить на оси координат. Например, для изображения перемещения мухи по стеклу логично использовать двухмерную плоскость с двумя осями координат Для графического описания полета птицы удобнее будет взять трехмерную систему координат, с добавлением третьей оси.

Любое перемещение связано со временем, значит, нужно ввести четвертую систему координат. И тогда мы получим четырехмерную гиперповерхность, где каждое событие может быть отмечено, кроме трех привычных, еще и четвертой величиной – временем. Графически это будет выглядеть довольно сложно, так как время – это не просто точка на графике, а динамические изменения, оно превращает линии, изображенные на бумаге, в траектории движения.

 

Четырехмерный след, оставляемый любым телом в пространстве и времени, Минковский назвал мировой линией. А весь мир, все существование – совокупностью таких линий.

 

Ученый ввел в расчеты новую величину – собственное время. Он определил ее как расстояние, но не между двумя положениями тела, а между двумя событиями, произошедшими с этим телом. Из специальной теории относительности мы знаем, что такие величины, как время и пространство, не абсолютны, они могут меняться (растягиваться, сжиматься) в зависимости от системы отсчета. Но к собственному времени это не относится. Оно остается одинаковым при любой смене систем координат. Чтобы понять пространственно‑временные изменения в разных системах координат, рассмотрим простой пример. Представим, что возле стены в подвешенном состоянии находится стержень, он освещен двумя фонариками: сверху и со стороны, противоположной стене. Тень на полу в этом случае будет представлять собой точку, тень на стене – линию. Если мы начнем наклонять стержень в плоскости, создаваемой двумя источниками света (в сторону стены), то тени начнут меняться – тень на полу будет удлиняться, пока из точки не превратится в линию, тень на стене поведет себя противоположным образом.

 

 

Графическое изображения четырехмерного пространства Минковского. Горизонтальная ось координат включает в себя пространство, вертикальная – время

 

Стержень остался неизменным, изменились его проекции, или интерпретации, относительно наблюдателей со стороны стены и со стороны пола. Этот эксперимент представляет собой геометрическую демонстрацию лоренцева сжатия тел при движении и замедления времени.

В пространстве Минковского тела движутся равномерно и прямолинейно или находятся в состоянии покоя. На оси координат их можно изобразить как точки или прямые линии – в зависимости от положения. Но если добавить в систему отсчета такие величины, как гравитация и ускорение (как это сделал Эйнштейн), прямые начинают искривляться, подобно тому, как это происходит с прямыми, проведенными на поверхности сферы.

Таким образом, общая теория относительности Эйнштейна, используя пространство Минковского, искривила его. Эти метаморфозы произошли благодаря присутствию массы. Масса, как доказал Эйнштейн, присутствуя в пространстве, искривляет его. Чем больше масса тела, тем сильнее искривление. «Гравитация – это не чуждая физическая сила, действующая в пространстве, а проявление геометрии пространства там, где находится масса», – так это явление объяснил американский ученый Джон Уилер. Основная идея общей теории относительности заключается в том, что силу гравитации, тяготение создает само пространство‑время. Из‑за присутствия материи, наделенной массой, оно искривляется. Если пространство обладает малой плотностью и в нем действуют лишь постоянные скорости, то его можно изобразить в виде гладкого листа бумаги с нанесенными на него прямыми линиями. Если же появляется ускорение и увеличивается плотность, то этот лист начнет собираться складками и морщинами, прямые линии превратятся в изломанные.

Эйнштейн вывел уравнения, описывающие отношение между присутствием массы и формой четырехмерного пространства. Из них становится ясно, что пространство задает траекторию движения материи, а материя создает искривление пространства. На создание системы уравнений, математически отражающих общую теорию относительности, у ученого ушло восемь лет, ему пришлось изучить сложнейший раздел алгебры – тензорный анализ. Для этого он воспользовался помощью своих коллег Марселя Гроссмана и Давида Гильберта.

Одно из свойств уравнения общей теории относительности заключается в том, что оно справедливо для любого наблюдателя, независимо от системы координат.

 

Важнейший постулат теории звучит так: любое физическое явление протекает одинаково во всех системах отсчета, инерциальных и движущихся с ускорением.

 

Общая теория относительности устранила противоречия, образовавшиеся в физике в начале XX века. В соответствии с законами Ньютона и классической механикой сила тяготения обладает свойством дальнодействия – действует мгновенно, независимо от расстояния. Модель, созданная Ньютоном, была математической и не имела подтверждения со стороны физики. Два столетия ученые пытались дать приемлемое объяснение мистическому дальнодействию или найти другое объяснение силе тяготения. Эта проблема особенно обострилась после создания электромагнитной теории Максвелла. Все другие силы были объяснены с точки зрения близкодействия, с использованием понятия поля, и только гравитация оставалась силой, непонятным образом передававшейся на огромные расстояния с невероятной быстротой.

Специальная теория относительности установила новые закономерности: ничто не может распространяться быстрее скорости света; законы физики действуют одинаково в любой инерциальной системе отсчета. Это, естественно, касалось и гравитации. Поэтому Эйнштейн, так же как и другие физики, начал поиск теории гравитации, которая отвечала бы открытым закономерностям. Результатом этих поисков и стала общая теория относительности.

Эйнштейн продемонстрировал, что пространство (в данном случае четырехмерное пространство‑время) – не просто плоская инертная среда, в которой происходят события. Пространство обладает собственными физическими и геометрическими характеристиками, в первую очередь кривизной. Наблюдается взаимное влияние пространства на происходящие в нем процессы и процессов на пространство. Специальная теория относительности рассматривала неискривленное пространство – частный случай инерциальных систем отсчета. Общая теория относительности имеет дело с общими принципами, где действует ускорение и возможно искривление пространства‑времени.

Общая теория относительности была неоднократно проверена экспериментально, ее эффекты и следствия подтверждены исследованиями. Среди эффектов теории относительности можно назвать смещение орбиты Меркурия, которое астрономы много лет не могли объяснить, замедление времени в гравитационном поле (гравитационное красное смещение), отклонение луча света в поле гравитации Солнца, гравитационная задержка сигнала и т. д.

 

 

8 соответствии с общей теорией относительности, массивное тело искривляет пространство и тем самым заставляет меньшее тело, находящееся поблизости, изменять траекторию

 

Рассмотрим эффект отклонения луча. О том, что световой луч, проходящий рядом с Солнцем, отклоняется, говорил еще астроном из Германии Иоганн Георг фон Зольднер в 1804 году. Тогда физики считали, что свет состоит из микроскопических частиц, на которые может воздействовать сила тяжести. Зольднер писал: «Световой луч, проходящий рядом с небесным телом, под воздействием силы его притяжения описывает гиперболу». По его расчетам, угол отклонения луча, проходящего рядом с Солнцем, составляет 0,84 секунды. Через сто лет свет стали считать волной, а не средоточием частиц, и о гипотезе Зольднера забыли.

Ее возродил Эйнштейн, когда изучал влияние силы тяжести на распространение света. В 1911 году он даже написал по этому поводу статью. Рассчитав угол отклонения, Эйнштейн пришел практически к тем же цифрам – 0,83 секунды. Он понял, что проверить это можно во время полного солнечного затмения, когда звезды, расположенные в непосредственной близости от Солнца, становятся видны.

Ближайшее затмение состоялось через три года, лучше всего его было наблюдать в Крыму, и коллега Эйнштейна, астроном Фрейндлих, отправился его наблюдать. Но сделать это ему не удалось. Шел 1914 год, началась Первая мировая война, немецких астрономов, прибывших наблюдать за затмением, приняли за шпионов и арестовали. В этом можно увидеть руку судьбы: позже выяснилось, что уравнение, по которому Эйнштейн рассчитывал отклонение, было неправильным. Ученый его доработал и получил новый результат – 1,7 секунды. Теперь опытная проверка стала еще более важной, с ее помощью можно было выяснить, кто прав – классическая физика или Эйнштейн с его теорией относительности.

 

 

Содержание общей теории относительности

 

Английскому астроному Артуру Эддингтону удалось провести проверку во время затмения 1919 года.

 

Расчеты Эйнштейна, а значит, и теория относительности были подтверждены.

 

Еще один интересный эффект, объясненный общей теорией относительности, – гравитационное замедление времени. Астроном Карл Шварцшильд занимался решением уравнений Эйнштейна для отдельной звезды и обнаружил, что при приближении к звезде время начинает идти медленнее. Чем ближе к гравитационному центру, тем больше проявлен эффект замедления времени. Это явление визуально подтверждалось красным смещением, которому подвергался идущий от звезды свет.

Всем известно, что такое радуга, это разложение солнечного света на спектр цветов. Такое же разложение можно проделать с любым излучением: излучение состоит из волн различной длины, и это можно увидеть при помощи специальных приборов. К примеру, атомный спектральный анализ позволяет определить состав звезды по ее излучению.

Из расчетов Шварцшильда следовало, что время течет медленнее для атомов вещества на звезде, чем для атома того же самого вещества, находящегося на Земле. Чем массивнее и плотнее звезда, тем медленнее будет течь время поблизости от нее и тем явственнее будет эффект красного смещения. Рассуждая дальше, Шварцшильд пришел к выводу, что при критической плотности объекта время рядом с ним остановится. Для него это открытие стало лишь математической иллюзией. Он и не подозревал, что описывает черную дыру – эти объекты были обнаружены гораздо позже.

 

 

Под действием массы Солнца пространство рядом с ним искривляется, это можно заметить по отклонению световых лучей, идущих от звезд. Это явление – следствие общей теории относительности – описал Эйнштейн

 

Эйнштейн тоже считал, что подобное тело не может существовать в реальности – здесь теория, вернее, ее следствие, вошли в противоречие со своим создателем. Теория победила: в 1967 году Джон Уилер впервые употребил термин «черная дыра». Оказалось, что это явление имеет поистине фантастические характеристики: критическая масса, замедление времени и горизонт событий – черта, попав за которую, ничто не способно вырваться из черной дыры. Существование черных дыр полностью вписывается в общую теорию относительности и подтверждает ее.

 


Дата добавления: 2018-09-22; просмотров: 219; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!