ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ЛИХОРАДКИ



Способность регулировать постоянство температуры тела в филогенезе развилась довольно поздно. Она появилась у животных, у которых был хорошо развит головной мозг. В соответствии с этим и способность "лихорадить" отмечается только у высших гомойотермных животных. Животные, не обладающие устойчивой гомойотермией, на действие патогенных факторов отвечают лишь слабой и нетипичной лихорадочной реакцией. Наиболее выражена такая реакция у хищников, приматов и в особенности у человека.

В онтогенезе того или иного вида животных способность развивать лихорадочную реакцию формируется по-разному в зависимости от степени развития центральной нервной системы к моменту рождения. Зрелорождающие животные (копытные, морские свинки, некоторые виды птиц) обладают способностью удерживать на постоянном уровне свою температуру уже с первых часов самостоятельной жизни. Детеныши плотоядных, новорожденные дети не сразу приспосабливаются к поддержанию своей температуры на постоянном уровне. Терморегуляция у них развивается постепенно. Недоношенные дети не способны к гомойотермии и реагируют на температуру внешней среды, как пойкилотермные; легко перегреваются и охлаждаются. Новорожденные щенята и крольчата в первые 2 мес жизни реагируют слабой и атипичной лихорадкой. У детей в возрасте 3 — 4 мес пневмония протекает при субфебрильной температуре или вообще без повышения температуры. Отсутствие лихорадки у детей раннего возраста объясняется прежде всего тем, что у них еще не созрела физическая терморегуляция, т.е. способность быстро и эффективно ограничивать теплоотдачу. Лихорадка не возникает и при повышенном теплообразовании, пока еще не выработалась сосудосуживающая реакция кожи.

ЭТИОЛОГИЯ

Различают инфекционные и неинфекционные причины лихорадки. В процессе эволюции лихорадочная реакция выработалась прежде всего как ответ на проникновение в организм микроорганизмов и их токсинов. В то же время известно, что она может возникнуть и при попадании в организм веществ, не имеющих отношения к инфекции, например, при переливании крови, при введении белков и липидов с целью парентерального питания.

Пирогенные вещества. Пирогенными (жаронесущими) веществами называются такие вещества, которые, попадая в организм извне или образуясь внутри него, вызывают лихорадку. По происхождению пирогенные вещества разделяются на экзогенные (бактериальные, небактериальные) и эндогенные (лейкоцитарные), а по механизму действия — на первичные и вторичные. Первичные пирогены, проникая в организм, еще не вызывают лихорадки, а только инициируют этот процесс, побуждая собственные клетки к выработке специальных белковых веществ (вторичные пирогены), которые в свою очередь воздействуют на механизмы терморегуляции и приводят к лихорадке.

Интерес к эндотоксину резко возрос, когда было отмечено, что под его влиянием у животных и у человека облегчается течение ряда заболеваний, в том числе опухолей, сифилиса мозга и др. В связи с этим бактериальные пирогены стали применять в клинике. Трудность, однако, заключалась в том, что такие пирогены вместе с лихорадкой вызывали и явления интоксикации в виде геморрагического шока, тромбоза, поражений кожи по типу феномена Швартцмана и т. д. В связи с этим отрабатывалась такая технология получения пирогена, чтобы его благоприятное действие (пирогенное, лечебное) сохранялось, а токсическое в то же время устранялось. Это удалось только отчасти.

Исходным материалом для получения пирогенов как лекарственных средств послужили грамотрицательные бактерии. Отечественный препарат пирогенал получен из Pseudomonas aerugenosa, швейцарский пирексаль был выделен из Salmonella abortus equi. Для того чтобы вызвать лихорадку у человека, надо ввести около 1 мкг пирогенала на 1 кг массы тела. Температура повышается через 40 — 90 мин после парентерального введения пирогенала и удерживается 6 — 9 ч.

В последнее время пирогены получены синтетическим путем. При этом снова было установлено, что биологическая активность вещества определяется частью макромолекулы, которая получила название липоид А.

Первичные пирогены могут образовываться в самом организме, независимо от микроорганизмов (лихорадка при переломе костей, при переливании крови, при инфаркте миокарда). Эти "жаронесущие" вещества образуются при повреждении или разрушении собственных тканей и оказывают на организм действие, аналогичное действию "истинных", т. е. микробных пирогенов.

Механизм лихорадки, вызываемой микроорганизмами, продуцирующими экзотоксины (дифтерия, столбняк), еще не изучен. Вирусы, риккетсии, спирохеты также обусловливают заболевания, сопровождающиеся повышением температуры, но наличие пирогена в них не установлено.

ПАТОГЕНЕЗ

Патогенез лихорадки заключается в образовании под влиянием первичных пирогенов вторичных пирогенов. Этот процесс совершается прежде всего в макрофагоцитах (фиксированных и подвижных), а также в нейтрофильных гранулоцитах. Синтез вторичных пирогенов был показан в опытах in vitro. Если к культивируемым лейкоцитам добавить первичный пироген, то вскоре в культуральной жидкости образуется вещество, введение которого в организм повышает температуру тела. При инъекции этого вещества непосредственно в гипоталамус, в котором расположен тепловой центр, лихорадка развивается уже при применении весьма незначительных количеств.

Синтез вторичных пирогенов закодирован в геноме лейкоцитов. Если образование белков блокировать актиномицином D или пурамицином, то синтез пирогена не происходит. Биосинтез пирогенов в лейкоцитах отмечается после действия на них первичных (бактериальных) пирогенов, активизируя тем самым метаболические процессы в них. Такое действие первичные пирогены оказывают через рецепторы на мембранах клеток, либо при проникновении токсина внутрь макрофагов путем фагоцитоза или пиноцитоза. Этот процесс, по-видимому, не является строго специфичным, потому что синтез вторичных пирогенов может быть индуцирован и другими веществами, в том числе гормонами. Известно, что у женщин во время нормального менструального цикла от овуляции до первых дней менструации температура тела повышается на 0,4 — 0,9° С. Относительно неинфекционных пирогенов, т.е. веществ, которые проникают в организм со стерильным материалом или образуются в организме вне инфекционного процесса (аллергия), следует допустить такую же возможность, т.е. активацию макрофагов в направлении синтеза пирогена.

В последнее время представление об эндогенных (вторичных) пирогенах изменилось, так как было доказано, что способностью повышать температуру обладает интерлейкин-1, который, кроме пирогенного, оказывает еще целый ряд эффектов.

Интерлейкин-1 — гормоноподобный белок с относительной молекулярной массой 14 000. Он выделяется макрофагами при их активации и затем оказывает специфическое влияние на целый ряд систем, в том числе и на нервную. Клетками-мишенями интерлейкина-1 (ИЛ-1) являются также лимфоциты, гепатоциты, фибробласты, синовиоциты, миоциты. Допускают, что на мембранах всех перечисленных клеток имеются рецепторы для ИЛ-1. Таким образом, выброс ИЛ-1 вызывает не только повышение температуры, но вовлекает в процесс и другие системы, обусловливающие не только температурные, но и не температурные проявления лихорадки (см. ниже).

Последовательность событий в патогенезе лихорадки представлена на рис. 16.1. Процесс начинается с попадания в организм микроорганизмов, а вместе с ними пирогенов, которые являются их токсинами. Последние оказывают воздействие на макрофаги и нейтрофилы, а те в cвою очередь начинают синтезировать интерлейкин-1. Циркулирующий в крови интерлейкин-1 имеет целый ряд мишеней, в том числе и гипоталамус, в котором расположен центр теплорегуляции. Непосредственно в контакт с нейронами этого центра интерлейкин-1 не вступает, так как не проникает через гематоэнцефалический барьер. Однако под его влиянием на уровне мозговых артериол и капилляров образуются простагландины E1 и Е2 (медиаторы лихорадки), которые могут проникать через этот барьер, они-то и воздействуют непосредственно на центр терморегуляции. В результате этого меняется "установочная точка" указанного центра и температура тела устанавливается на более высоком уровне, на котором удерживается в течение всего времени, пока продолжается синтез интерлейкина-1.

Центры терморегуляции и их роль в развитии лихорадки. Главным центром терморегуляции является гипоталамическая область, хотя и другие отделы центральной нервной системы от сегментарных центров спинного мозга до коры большого мозга участвуют в терморегуляции. Установлено, что термочувствительные нейроны ("холодовые" и "тепловые") расположены преимущественно в предзрительном поле передней гипоталамической области, куда поступает информация от периферических (поверхностных и глубоких) терморецепторов. Эта зона обладает и непосредственной чувствительностью к температурным колебаниям, что подтверждено исследованиями с помощью термодов — тонких трубочек, которые вводят в определенный центр мозга и пропускают по нам теплую или холодную воду. При использовании теплой воды наблюдается перестройка терморегуляции, направленная на выведение тепла: ректальная температура снижается. Если применить холодную воду, то температура тела, наоборот, повышается.

В задней гипоталамической области происходит интеграция температурной информации и формирование эффекторных стимулов, управляющих физической и химической терморегуляцией. В случае разрушения этой области или всего гипоталамуса животные становятся пойкилотермными. При разрушении передней гипоталамической области способность "лихорадить" через некоторое время восстанавливается.

Операции на центральной нервной системе показали значение и других ее отделов. При перерезке мозга выше гипоталамуса у животного сохраняется способность "лихорадить" (рис. 16.2). Перерезка, при которой гипоталамус отделяется от ствола мозга, лишает животное этой способности. Наконец, при перерезке спинного мозга в грудной области, способность "лихорадить" восстанавливается после выхода животного из состояния спинального шока.

Роль центра терморегуляции заключается в том, чтобы сохранять температурный гомеостаз, уравновешивая процессы теплопродукции и теплоотдачи. Это возможно благодаря тому, что центр терморегуляции функционирует как кибернетическое устройство в точно заданном режиме, и колебания температуры (суточные) допускаются только в узких пределах от "установочной точки". Таким образом, организм теплокровных представляет собой как бы биологический термостат, температура которого зависит от того, на какую точку установлен терморегулятор, т. е. соответствующий центр мозга. Эта уставная точка может быть изменена в 2 случаях: либо при чрезвычайном воздействии (перегревание, гипотермия, замерзание, гипоксия), когда этот механизм полностью или частично выводится из строя, либо под влиянием пирогенов, когда установочный механизм не разрушается, а изменяется таким образом, что установочная точка перемещается на более высокий уровень.

На основании тонких электрофизиологических исследований механизм лихорадки можно представить следующим образом. В гипоталамической центре терморегуляции имеются нейроны трех типов: чувствительные к теплу, чувствительные к холоду и "глухие" к колебаниям температуры. Допускают, что главную роль играют последние. Они генерируют сигналы стандартного характера, которые служат сигналом сравнения для термочувствительных нейронов. В случае, если под влиянием пирогена меняется функция термонечувствительных нейронов, то изменяются сигнал сравнения и, следовательно, уставная точка температурного гомеостаза, уровень которой этот сигнал определяет.

Есть и другое объяснение формирования установочной точки температуры. Оно заключается в том, что установочная точка определяется первичным состоянием функций теплочувствительных и холодочувствительных нейронов. С помощью микроэлектронной техники было выявлено, что под влиянием пирогена активность холодочувствительных нейронов повышается, а теплочувствительных — снижается. В связи с этим порог чувствительности центра терморегуляции смещается к холоду, и нормальная температура воспринимается как пониженная. В этом случае перекрываются пути отдачи тепла, температура тела повышается и удерживается на этом уровне в течение некоторого времени (на период лихорадки).

Кроме пирогенов, в формировании лихорадочной реакции определенную роль играют и другие вещества, прежде всего гормоны. Сами они лихорадки не вызывают, но, оказывая влияние на центр терморегуляции, модулируют его работу, т. е. настраивают на иной лад, повышая или понижая его чувствительность к пирогенам. При тиреотоксикозе инфекционные заболевания обычно протекают с более высокой температурой. У лиц с пониженной функцией щитовидной железы или гипофиза сопутствующие инфекционные заболевания сопровождаются менее выраженной лихорадкой.

Гликокортикоиды (кортизол) тормозят развитие лихорадочной реакции, по-видимому, вследствие того, что они ингибируют метаболические процессы в лейкоцитах, и в том числе образование в них пирогенов.

Стадии лихорадки. Соотношение между теплопродукцией и теплоотдачей. Лихорадочный процесс всегда проходит 3 стадии, в соответствии с чем температурная кривая состоит из трех частей. В I стадии (st. incrementi) температура тела повышается, во II (st. fastigi) — удерживается некоторое время на повышенном уровне, в III (st. decrementi) — снижается до исходного уровня.

I. Стадия повышения температуры. Подъем температуры на этой стадии отражает перестройку терморегуляции в том смысле, что теплопродукция превышает теплоотдачу. Изменяется и та, и другая, но главное значение при этом имеет ограничение теплоотдачи, что не только эффективнее относительно скорости разогревания тела, но и экономнее для организма, так как не требует дополнительных энергетических затрат.

Теплоотдача уменьшается в результате сужения периферических сосудов и снижения притока теплой крови к тканям, торможения потоотделения и угнетения испарения, сокращения у животных мышц волосяных луковиц и взъерошивания шерсти, увеличивающей теплоизоляцию. Эквивалентом этой реакции у человека служит появление "гусиной кожи".

Увеличение теплопродукции достигается в результате активизации обмена веществ в мышцах (сократительный термогенез) на фоне повышенного тонуса мышц и мышечной дрожи. Мышечная дрожь связана со спазмом периферических сосудов. Из-за уменьшения притока крови температура кожи снижается иногда на несколько градусов. Терморецепторы возбуждаются, возникает ощущение холода — озноб. В ответ на это центр терморегуляции посылает эфферентные импульсы к двигательным нейронам — возникает дрожь. Одновременно с этим усиливается и несократительный термогенез, т. е. образование тепла в органах, таких как печень, легкие, мозг. Это является результатом трофического действия нервов на ткань, вследствие которого активируются ферменты, увеличиваются потребление кислорода и выработка тепла. В разбалансировании теплового гомеостаза определенную роль могут играть также гуморальные факторы. Известно, что некоторые бактериальные токсины обладают способностью разобщать окисление и окислительное фосфорилирование и тем самым способствовать образованию тепла. Этот дополнительный термогенез может ускорить повышение температуры в I стадии лихорадки.

II. Стадия удержания повышенной температуры. После того как в I стадии лихорадки температура повысилась до определенного уровня, она удерживается на нем в течение некоторого времени (дни, часы). Так как при этом повышается теплоотдача, то дальнейшего возрастания температуры не происходит. Включение теплоотдачи осуществляется благодаря расширению периферических сосудов; бледность кожи сменяется гиперемией. Кожа становится горячей на ощупь. Возникает ощущение жара.

Поддержание температуры на повышенном уровне объясняется тем, что под влиянием лейкоцитарного пирогена меняется установочная точка центра терморегуляции. На этом уровне возобновляется механизм поддержания постоянства температуры с характерными колебаниями утром и вечером, амплитуда которых значительно превышает таковую в норме (рис. 16.3).

По степени повышения температуры во II стадии лихорадки различают следующие ее виды: субфебрильная — до 38°С; умеренная — 38— 39°С; высокая — 39 — 41°С; гиперпиретическая — выше 41°С.

Новый уровень температуры, ее колебания в течение суток определяются рядом факторов, из которых решающее значение имеет количество пирогенов и чувствительность к ним центров терморегуляции. Кроме того, имеет значение мощность системы отведения тепла, точность и надежность функциональной и трофической иннервации, образование веществ-разобщителей и, наконец, наличие в организме энергетического запаса материала, прежде всего жира. У истощенных людей инфекционные болезни могут протекать без лихорадки. У детей она развивается быстро, у стариков — медленно, до невысокого уровня.

III. Стадия снижения температуры. После прекращения действия пирогенов центр терморегуляции приходит в прежнее состояние, установочная точка температуры опускается до нормального уровня. Накопившееся в организме тепло выводится в результате расширения кожных сосудов, появлений обильного пота и частого дыхания. Снижение температуры может быть постепенным, литическим (в течение нескольких суток) или быстрым, критическим (рис. 16.4). В последнем случае может произойти слишком резкое расширение сосудов, а при сочетании с интоксикацией может наступить опасный для жизни коллапс (см. ниже).

Типы температурных кривых. Температурная кривая при лихорадке всегда состоит из трех частей — подъема, удержания и „снижения, но каждая из них, как и кривая в целом,, может иметь свои особенности, которые информируют врача о состоянии больного и имеют дифференциально-диагностическое значение.

На характер температурной кривой могут влиять биологические особенности возбудителя, например цикличность его развития в крови. В этом отношении показательна температурная кривая при малярии (febris intermittens). Так, при трехдневной малярии (malaria tertiana) приступы лихорадки возникают через день, в соответствии с чем температура резко повышается и удерживается на высоте в период от 30 — 60 мин до 2 — 3 ч, а затем возвращается к исходному уровню и даже может быть ниже его (рис. 16.5).

Зависимость температурной кривой от возбудителя хорошо прослеживается также на примере лихорадки при возвратном тифе (febris recurens). Спирохета Обермейера при этом фагоцитируется макрофагоцитами и размножается в них. По мере накопления в клетках, спирохеты прорывают барьер мононуклеарных фагоцитов и заполняют кровь. Этому способствует очередной приступ лихорадки, продолжающийся 6 — 8 дней, после чего температура критически снижается и наступает период апирексии, который также длится 6 — 8 дней. Приступы могут повторяться (рис. 16.6).

При крупозном воспалении легких температурная кривая сначала резко поднимается, удерживается в течение 7 — 9 дней, колеблясь в пределах одного градуса, а затем резко снижается (febris continua) (рис. 16.7). При сепсисе (febris hectica) суточные колебания температуры достигают 2 — 3°С.

Лихорадочные биоритмы зависят не только от возбудителя болезни, но и от организма больного, от способности его иммунной системы отвечать на антигенные стимулы, от состояния нервной и эндокринной системы, обмена веществ. Следует отметить, что в связи с применением антибиотиков и других препаратов, температурные кривые в значительной степени утратили свою типичность.

Гипертермия и ее отличие от лихорадки. От лихорадки следует отличать перегревание или гипертермию. В этих случаях одинаков только конечный результат, проявляющийся повышением температуры тела. Механизм этих состояний не только различен, но прямо противоположен. Во-первых, при перегревании отсутствует влияние пирогенного вещества, а повышение температуры тела является результатом либо внешнего воздействия, ограничивающего теплоотдачу, либо первичного нарушения работы гипоталамуса resp. теплового центра. Перегревание организма в результате задержки тепла в организме наблюдается на производствах с высокой температурой окружающей среды или в районах с жарким климатом. В этих случаях ему способствует усиление теплопродукции в связи с мышечной работой.

Компенсация при перегревании заключается в преодолении трудностей в отношении выделения тепла и сохранения теплового гомеостаза. Так как при температуре окружающей среды около 33°С отдача тепла излучением и конвекцией практически прекращается, то этот процесс может осуществляться только путем испарения пота и влаги с дыхательных путей. Однако при высокой влажности окружающего воздуха это тоже становится невозможным, все компенсаторные механизмы оказываются неэффективными, и температура тела повышается, однако это состояние не является лихорадкой.

Температура тела может повышаться и без воздействия средовых факторов в результате первичного нарушения работы теплового центра. Такие случаи наблюдаются при патологии головного мозга, опухолях, травмах, кровоизлияниях, инфекциях и т. д., что известно в клинике как "гипертермический синдром".

Лихорадка как комплексная температурная и нетемпературная реакция на интерлейкин-1. Лихорадка — патологический процесс, в который вовлечена не только система терморегуляции, но и другие системы, прежде всего иммунная. Это становится понятным, если учесть, что лихорадка в эволюции возникла как реакция на инфекцию. Обращает на себя внимание также связь между лихорадкой и воспалением. Можно даже сказать, что лихорадка, иммунитет (аллергия) и воспаление представляют собой своеобразную триаду, определяющую ответ на действие микроорганизма (ответ "острой фазы")- Связь между этими тремя реакциями столь тесная, что отдельно они не существуют, а развившись, поддерживают друг друга.

Когда в организм проникает микроорганизм и из него освобождается токсин (он же пироген), то на последний реагируют макрофаги, которые в ответ на этот специфический стимул вырабатывают и выделяют интерлейкин-1. У него, кроме теплового центра, имеется много других мишеней, в том числе системы, ответственные за иммунитет и за воспаление. На рис. 16.8 представлены описанные связи. Как видно, ИЛ-1 действует на лимфоциты Т и В, стимулируя их к делению и выработке антител, а также лимфокинов. Вторая мишень ИЛ-1 — гепатоциты, которые в ответ на стимул синтезируют и секретируют в кровь различные белки, в том числе церулоплазмин, С-реактивный белок, фибриноген и т. д. Фибробласты реагируют пролиферацией, синтезом коллагена, простагландинов. Эндотелиоциты в этой ситуации больше вырабатывают факторов коагуляции, простагландинов. Есть мишени, которые на ИЛ-1 реагируют иначе. В мышцах наблюдается протеолиз, в хондроцитах усиливается продуцирование коллагеназы и разрушается хрящевая ткань.

В мозге и в цереброспинальной жидкости при лихорадке увеличивается количество бета-эндорфина. С этим связывают появление сонливости, бредовых симптомов, наблюдающихся при лихорадке. Боли в мышцах и суставах тоже объясняют действием ИЛ-1.

Изменения в органах и системах при лихорадке. Кроме расстройств терморегуляции, при лихорадке наблюдается и целый ряд других, нетемпературных изменений, в том числе нарушения обмена веществ, сердечно-сосудистой и дыхательной систем, секреторных и экскреторных функций. Возникает целый комплекс явлений, и трудно различить, какое из них зависит от влияния пирогена, интерлейкина-1 и непосредственно от болезни (пневмония, инфаркт, гепатит), при которой возникла лихорадка.

Наиболее отчетливые изменения при этом наблюдаются в системе кровообращения. По правилу Либермейстера, повышение температуры на 1°С сопровождается учащением пульса на 8 — 10 ударов. Поскольку локальное согревание узла — водителя ритма сердца сопровождается учащением сокращений сердца, то этим объясняют и тахикардию при лихорадке. Кроме того, имеет значение повышение тонуса симпатических нервов. Ударный и минутный объем крови увеличиваются. В I стадии лихорадки артериальное давление может повышаться, происходит сужение сосудов кожи и их расширение во внутренних органах. В III стадии при критическом снижении температуры может наступить коллапс вследствие резкого снижения тонуса артерий.

Следует отметить, что тахикардия при лихорадке отмечается не всегда. При некоторых инфекционных заболеваниях температура повышается и в то же время наблюдается брадикардия. Примером этого являются брюшной и возвратный тиф — заболевания, протекающие с сильной интоксикацией, когда сердце реагирует не столько на высокую температуру, сколько на действие токсических веществ экзогенного и эндогенного происхождения.

Внешнее дыхание в I стадии лихорадки несколько замедляется. В дальнейшем, при достижении максимальной температуры, дыхание учащается, иногда в 2 — 3 раза. Поскольку при этом глубина дыхания уменьшается, то легочная вентиляция существенно не изменяется. Нарушение частоты дыхания является следствием повышения температуры головного мозга, которое вызывает учащение дыхания (полипноэ).

Система пищеварения при лихорадке подвергается значительным изменениям — угнетается отделение слюны (язык сухой, обложенный), уменьшается количество и снижается кислотность желудочного сока, ухудшается аппетит. Однако выраженность этих явлений неодинакова и в значительной степени зависит от характера заболевания. Например, при гриппе эти изменения менее выражены, чем при брюшном тифе.

Сравнивая нарушения, обусловленные действием высокоочищенных бактериальных пирогенов и естественным развитием инфекционной болезни, П. Н. Веселкин полагает, что изменения в пищеварительной системе вызваны не столько лихорадкой, сколько голоданием, интоксикацией и нетермогенным влиянием бактериальных токсинов.

Лихорадка сопровождается изменениями эндокринной системы — активизируется система гипофиз — надпочечные железы, наблюдаются признаки стресса. При инфекционной лихорадке усиливается выброс гормонов щитовидной железы, что обеспечивает повышение основного обмена.

В центральной нервной системе наблюдаются изменения возбудительных и тормозных процессов. На электроэнцефалограмме появляется медленный альфа-ритм, характерный для торможения коры большого мозга. При введении пирогенов у человека могут отмечаться бессонница, чувство разбитости, усталость, головная боль. При инфекционных заболеваниях все эти явления протекают значительно тяжелее: с потерей сознания, бредом, галлюцинациями. Так как эти явления наблюдаются и при умеренном повышении температуры, то они, очевидно, связаны не столько с повышением температуры, сколько с интоксикацией.

Основной обмен при лихорадке повышен, хотя прямая связь между активизацией обмена и повышением температуры отсутствует. Азотистый баланс при ряде инфекционных заболеваний становится отрицательным.

Для лихорадки характерно изменение водно-электролитного обмена. В I стадии наблюдается увеличение диуреза вследствие повышения артериального давления и прилива крови к внутренним органам. Во II стадии, в результате усиления продуцирования альдостерона, в тканях задерживается натрий, а следовательно и вода. Диурез уменьшен. В III стадии увеличивается выведение хлоридов, в том числе натрия хлорида, вода "покидает" ткани, увеличивается количество мочи и пота.

ЗНАЧЕНИЕ ЛИХОРАДКИ

При лихорадке, как и при других типических патологических процессах, вредные и полезные факторы находятся в неразрывной связи. Повышенная температура препятствует размножению многих возбудителей — кокков, спирохет, вирусов. Репродукция вируса полиомиелита при 40°С резко угнетается. Многие микроорганизмы способны размножаться при температуре 40°С, но при этом теряют устойчивость к лекарственным препаратам. Так, чувствительность туберкулезной палочки к действию стрептомицина при 42°С примерно в 100 раз выше, чем при 37°С.

Лихорадка положительно влияет на целый ряд функций организма: возрастает интенсивность фагоцитоза, стимулируется выработка антител, увеличивается выработка интерферона. Искусственное подавление лихорадки приводит к снижению в крови количества нейтрофильных лейкоцитов, к понижению функций макрофагальных элементов.

Обращает на себя внимание связь между лихорадкой и воспалением. Макрофагоциты не только поглощают и обезвреживают бактерии, но и синтезируют пирогены (ИЛ-1). Если еще учесть, что макрофагоциты вместе с лимфоцитами участвуют в процессе выработки антител (клеточная кооперация), то связь между лихорадкой, иммунитетом и воспалением становится более очевидной.

В положительном влиянии лихорадки на течение основного заболевания большое значение принадлежит стрессу (активизация гипоталамо — гипофизарно — надпочечниковой системы), повышающему неспецифическую резистентность организма.

Защитно-приспособительные реакции организма, мобилизующиеся при лихорадке, сопровождающей инфекционное заболевание, могут быть в значительной степени обесценены развитием интоксикации и повреждением жизненно важных органов. В этих случаях повышение температуры может привести к отрицательным последствиям, так как при лихорадке ряд органов функционируют с дополнительной нагрузкой, в первую очередь сердце и сосуды. При недостаточности кровообращения повышение температуры может вызвать тяжелые состояния, которые следует устранить.

Разрабатывая тактику лечебных мероприятий при лихорадке и исходя из конкретной ситуации, врач должен решить, что в картине болезни "есть результат повреждения и что есть результат противодействия организма данному повреждению" (И. П. Павлов).

Применение лихорадки в медицине. Лечебное применение лихорадки получило распространение благодаря случайным наблюдениям. Одесский врач А. С. Розенблюм (1876) заметил, что состояние больных сифилисом улучшалось, когда они заболевали возвратным тифом. В дальнейшем заражение возвратным тифом, а чаще малярией, стали применять для лечения поздних стадий сифилиса [Вагнер—Яурегг, 1917]. В настоящее время с этой целью используют высокоочищенные препараты пирогенов — пирогенал, пирифер и др. Пиротерапия при лечении сифилиса эффективна вследствие того, что на поздних стадиях этой болезни возбудитель находится в головном мозге, доступ в который закрыт для лекарственных препаратов и антител, так как они не обладают способностью проникать сквозь гематоэнцефалический барьер. При повышении температуры тела проницаемость его увеличивается, повышается общая и иммунная реактивность организма, облегчающая лечение больного.

Состояние лихорадки используют не только при лечении сифилиса, но и при других инфекционных заболеваниях. Хороший результат был получен при лечении костно-суставного туберкулеза, в случае когда пиротерапию применяли в сочетании со специфическими антимикробными средствами. Пиротерапия эффективна и при гипертонической болезни почечного генеза, так как возникающее при ее использовании расширение сосудов органов брюшной полости вызывает повышение кровотока в почках и снижение общего артериального давления.

В настоящее время с той же целью в клинике применяют интерлейкин-1. Преимущество последнего по сравнению с пирогенами микробного происхождения состоит в том, что он не оказывает токсического действия, как пирогены, а способствует развитию лихорадки, стимулируя его из внешних источников, так как сам он не вырабатывается в организме.

Гипоксия

Патологическая физиология [Учебник для студентов мед. вузов]
Н. Н. Зайко, Ю. В. Быць, А. В. Атаман и др. К.: "Логос", 1996

Гипоксия, или кислородное голодание — типический патологический процесс, развивающийся в результате недостаточного снабжения тканей кислородом или нарушения использования его тканями.

Виды гипоксии

В основу классификации, которая приводится ниже, положены причины и механизмы развития кислородного голодания. Различают следующие виды гипоксии: гипоксическую, дыхательную, гемическую, циркуляторную, тканевую и смешанную.

Гипоксическая, или экзогенная, гипоксия развивается при снижении парциального давления кислорода во вдыхаемом воздухе. Наиболее типичным примером гипоксической гипоксии может служить горная болезнь. Ее проявления находятся в зависимости от высоты подъема. В эксперименте гипоксическая гипоксия моделируется при помощи барокамеры, а также с использованием дыхательных смесей, бедных кислородом.

Дыхательная, или респираторная, гипоксия возникает в результате нарушения внешнего дыхания, в частности нарушения легочной вентиляции, кровоснабжения легких или диффузии в них кислорода, при которых нарушается оксигенация артериальной крови (см. раздел XX — "Патологическая физиология внешнего дыхания").

Кровяная, или гемическая, гипоксия возникает в связи с нарушениями в системе крови, в частности с уменьшением ее кислородной емкости. Гемическая гипоксия подразделяется на анемическую и гипоксию вследствие инактивации гемоглобина. Анемия как причина гипоксии описана в разделе XVIII ("Патологическая физиология системы крови").

В патологических условиях возможно образование таких соединений гемоглобина, которые не могут выполнять дыхательную функцию. Таким является карбоксигемоглобин — соединение гемоглобина с окисью углерода (СО). Сродство гемоглобина к СО в 300 раз выше, чем к кислороду, что обусловливает высокую ядовитость угарного газа: отравление наступает при ничтожных концентрациях СО в воздухе. При этом инактивируются не только гемоглобин, но и железосодержащие дыхательные ферменты. При отравлении нитратами, анилином образуется метгемоглобин, в котором трехвалентное железо не присоединяет кислород.

Циркуляторная гипоксия развивается при местных и общих нарушениях кровообращения, причем в ней можно выделить ишемическую и застойную формы.

Если нарушения гемодинамики развиваются в сосудах большого круга кровообращения, насыщение крови кислородом в легких может быть нормальным, однако при этом может страдать доставка его тканям. При нарушениях гемодинамики в системе малого круга страдает оксигенация артериальной крови.

Циркуляторная гипоксия может быть вызвана не только абсолютной, но и относительной недостаточностью кровообращения, когда потребность тканей в кислороде превышает его доставку. Такое состояние может возникнуть, например, в сердечной мышце при эмоциональных напряжениях, сопровождающихся выделением адреналина, действие которого хотя и вызывает расширение венечных артерий, но в то же время значительно повышает потребность миокарда в кислороде.

К этому виду гипоксии относится кислородное голодание тканей в результате нарушения микроциркуляции, которая, как известно, представляет собой капиллярный крово- и лимфоток, а также транспорт через капиллярную сеть и мембраны клеток.

Тканевая гипоксия — нарушения в системе утилизации кислорода. При этом виде гипоксии страдает биологическое окисление на фоне достаточного снабжения тканей кислородом. Причинами тканевой гипоксии являются снижение количества или активности дыхательных ферментов, разобщение окисления и фосфорилирования.

Классическим примером тканевой гипоксии, при которой происходит инактивация дыхательных ферментов, в частности цитохромоксидазы — конечного фермента дыхательной цепи, является отравление цианидами. Алкоголь и некоторые наркотики (эфир, уретан) в больших дозах угнетают дегидрогеназы.

Снижение синтеза дыхательных ферментов бывает при авитаминозах. Особенно важны рибофлавин и никотиновая кислота — первый является кофактором флавиновых ферментов, вторая входит в состав НАД-зависимых дегидрогеназ.

При разобщении окисления и фосфорилирования снижается эффективность биологического окисления, энергия рассеивается в виде свободного тепла, ресинтез макроэргических соединений снижается. Энергетическое голодание и метаболические сдвиги подобны тем, которые возникают при кислородном голодании.

В возникновении тканевой гипоксии может иметь значение активация перекисного свободнорадикального окисления, при котором органические вещества подвергаются неферментативному окислению молекулярным кислородом. Перекисное окисление липидов (ПОЛ) вызывает дестабилизацию мембран митохондрий и лизосом. Активация свободнорадикального окисления, а следовательно, и тканевая гипоксия наблюдаются при действии ионизирующей радиации, гипероксии, а также при дефиците естественных антиоксидантов, которые участвуют в восстановлении свободных радикалов или в элиминации перекиси водорода. Таковыми являются токоферолы, рутин, убихинон, аскорбиновая кислота, глутатион, серотонин, каталаза, холестерин и некоторые стероидные гормоны.

Перечисленные выше отдельные виды кислородного голодания встречаются редко, чаще наблюдаются различные их комбинации. Например, хроническая гипоксия любого генеза обычно осложняется поражением дыхательных ферментов и присоединением кислородной недостаточности тканевого характера. Это дало основание выделить шестой вид гипоксии — смешанную гипоксию.

Выделяют еще гипоксию нагрузки, которая развивается на фоне достаточного или даже повышенного снабжения тканей кислородом. Однако повышенное функционирование органа и значительно возросшая потребность в кислороде могут привести к неадекватному кислородному снабжению и развитию метаболических нарушений, характерных для истинной кислородной недостаточности. Примером могут служить чрезмерные нагрузки в спорте, интенсивная мышечная работа. Этот вид гипоксии является пусковым механизмом развития утомления.

ПАТОГЕНЕЗ

Как и любой другой патологический процесс, гипоксия развивается в две стадии — компенсации и декомпенсации. Сначала благодаря включению компенсаторно-приспособительных реакций оказывается возможным поддерживать нормальное снабжение тканей кислородом вопреки нарушению доставки его. При истощении приспособительных механизмов развивается стадия декомпенсации или собственно кислородное голодание.

Компенсаторно-приспособительные реакции при гипоксии развиваются в системах транспорта и в системе утилизации кислорода. Кроме того, выделяют механизмы "борьбы за кислород" и механизмы приспособления к условиям пониженного тканевого дыхания.

Увеличение легочной вентиляции происходит в результате рефлекторного возбуждения дыхательного центра импульсами с хеморецепторов сосудистого русла, главным образом синокаротидной и аортальной зон, которые обычно реагируют на изменение химического состава крови и в первую очередь на накопление углекислоты (гиперкапния) и ионов водорода.

В случае гипоксической гипоксии, например при подъеме на высоту в горах, раздражение хеморецепторов происходит непосредственно в ответ на снижение в крови напряжения кислорода, так как рСО2 в крови также снижено. Гипервентиляция является несомненно положительной реакцией организма на высоту, но имеет и отрицательные последствия, поскольку осложняется выведением углекислоты, развитием гипокапнии и дыхательного (газового) алкалоза. Если принять во внимание влияние углекислоты на мозговое и коронарное кровообращение, регуляцию тонуса дыхательного и вазомоторного центров, кислотно-основное состояние, диссоциацию оксигемоглобина, то становится ясным, какие важные показатели могут нарушаться при гипокапнии. Все это означает, что при рассмотрении патогенеза горной болезни гипокапнии следует придавать такое же значение, как и гипоксии.

Усиление кровообращения направлено на мобилизацию средств доставки кислорода тканям (гиперфункция сердца, увеличение скорости кровотока, раскрытие нефункционирующих капиллярных сосудов). Не менее важной характеристикой кровообращения в условиях гипоксии является перераспределение крови в сторону преимущественного кровоснабжения жизненно важных органов и поддержание оптимального кровотока в легких, сердце, головном мозге вследствие уменьшения кровоснабжения кожи, селезенки, мышц, кишок. Наличие в организме своеобразной оксигенотопографии и ее динамических колебаний — важный приспособительный механизм при гипоксии. Перечисленные изменения кровообращения регулируются рефлекторными и гормональными механизмами, а также тканевыми продуктами измененного обмена, которые обладают сосудорасширяющим действием.

Повышение количества эритроцитов и гемоглобина увеличивает кислородную емкость крови. Выброс крови из депо может обеспечить экстренное, но непродолжительное приспособление к гипоксии. При более длительной гипоксии усиливается эритропоэз в костном мозге, о чем свидетельствует появление ретикулоцитов в крови, увеличение количества митозов в эритро- нормобластах и гиперплазия костного мозга. Стимуляторами гемопоэза являются эритропоэтины почек, а также продукты распада эритроцитов, который имеет место при гипоксии.

Изменения кривой диссоциации оксигемоглобина. При гипоксии повышается способность молекулы гемоглобина А присоединять кислород в легких и отдавать его тканям. Несколько возможных вариантов этого приспособления приведены на рис. 17.1. Сдвиг кривой диссоциации в области верхней инфлексии влево свидетельствует о повышении способности Нв поглощать кислород при более низком парциальном давлении его во вдыхаемом воздухе. Артериальная кровь может быть насыщена кислородом больше, чем обычно, что способствует увеличению артериовенозной разницы. Сдвиг вправо в области нижней инфлексии указывает на снижение сродства Нв к кислороду при низких величинах рО2, т. е. в тканях. При этом ткани могут получать больше кислорода из крови.

Имеются данные о повышении содержания в крови фетального гемоглобина, который имеет более высокое сродство к кислороду.

Механизмы долговременной адаптации к гипоксии. Описанные выше приспособительные изменения развиваются в наиболее реактивных системах организма, ответственных за транспорт кислорода и его распределение. Однако аварийная гиперфункция внешнего дыхания и кровообращения не может обеспечить стойкого и длительного приспособления к гипоксии, так как требует для своего осуществления повышенного потребления кислорода, сопровождается повышением интенсивности функционирования структур (ИФС) и усилением распада белков. Аварийная гиперфункция требует со временем структурного и энергетического подкрепления, что обеспечивает не просто выживание, а возможность активной физической и умственной работы при длительной гипоксии.

В настоящее время к этому аспекту приковано наиболее пристальное внимание исследователей. Предметом изучения являются горные и ныряющие животные, коренные жители высокогорных районов, а также экспериментальные животные с компенсаторными приспособлениями к гипоксии, выработанными в течение нескольких поколений. Установлено, что в системах, ответственных за транспорт кислорода, развиваются явления гипертрофии и гиперплазии — увеличивается масса дыхательных мышц, легочных альвеол, миокарда, нейронов дыхательного центра; усиливается кровоснабжение этих органов за счет увеличения количества функционирующих капиллярных сосудов и их гипертрофии (увеличения диаметра и длины). Это приводит к нормализации интенсивности функционирования структур (ИФС). Гиперплазию костного мозга тоже можно рассматривать как пластическое обеспечение гиперфункции системы крови.

Получены данные о том, что при длительной акклиматизации к высотной гипоксии улучшаются условия диффузии кислорода из альвеолярного воздуха в кровь благодаря повышению проницаемости легочно-капиллярных мембран, увеличивается содержание миоглобина, который представляет собой не только дополнительную кислородную емкость, но и обладает способностью стимулировать процесс диффузии О2 в клетку (рис. 17.2). Большой интерес представляют адаптационные изменения в системе утилизации кислорода. Здесь принципиально возможно следующее:

1. усиление способности тканевых ферментов утилизировать кислород, поддерживать достаточно высокий уровень окислительных процессов и осуществлять нормальный синтез АТФ вопреки гипоксемии;

2. более эффективное использование энергии окислительных процессов (в частности, в ткани головного мозга установлено повышение интенсивности окислительного фосфорилирования вследствие большего сопряжения этого процесса с окислением);

3. усиление процессов бескислородного освобождения энергии при помощи гликолиза (последний активизируется продуктами распада АТФ, а также вследствие ослабления ингибирующего влияния АТФ на ключевые ферменты гликолиза).

Существует предположение, что в процессе длительной адаптации к гипоксии происходят качественные изменения конечного фермента дыхательной цепи — цитохромоксидазы, а возможно, и других дыхательных ферментов, в результате чего повышается их сродство к кислороду. Появились данные о возможности ускорения самого процесса окисления в митохондриях (М. Н. Кондрашова).

Другой механизм адаптации к гипоксии заключается в увеличении количества дыхательных ферментов и мощности системы митохондрий путем увеличения количества митохондрий.

Последовательность этих явлений представлена на рис. 17.3. Начальным звеном является торможение окисления и окислительного ресинтеза аденозинтрифосфорной кислоты при недостатке кислорода, в результате чего в клетке уменьшается количество макроэргов и соответственно увеличивается количество продуктов их распада. Соотношение [АДФ]х[Ф ]/ [АТФ], обозначаемое как потенциал фосфорилирования, увеличивается. Этот сдвиг является стимулом для генетического аппарата клетки, активация которого приводит к увеличению синтеза нуклеиновых кислот и белков в системе митохондрий. Масса митохондрий увеличивается, что означает увеличение числа дыхательных цепей. Таким путем восстанавливается или повышается способность клетки вырабатывать энергию вопреки недостатку кислорода в притекающей крови.

Описанные процессы происходят главным образом в органах с наиболее интенсивной адаптационной гиперфункцией при гипоксии, т. е. ответственных за транспорт кислорода (легкие, сердце, дыхательные мышцы, эритробластический росток костного мозга), а также наиболее страдающих от недостатка кислорода (кора большого мозга, нейроны дыхательного центра). В этих же органах увеличивается синтез структурных белков, приводящий к явлениям гиперплазии и гипертрофии. Таким образом, длительная гиперфункция систем транспорта и утилизации кислорода получает пластическое и энергетическое обеспечение (Ф. 3. Меерсон). Эта фундаментальная перемена на клеточном уровне меняет характер адаптационного процесса при гипоксии. Расточительная гиперфункция внешнего дыхания, сердца и кроветворения становится излишней. Развивается устойчивая и экономная адаптация.

Повышению устойчивости тканей к гипоксии способствует активизация гипоталамо-гипофизарной системы и коры надпочечных желез. Гликокортикоиды активизируют некоторые ферменты дыхательной цепи, стабилизируют мембраны лизосом.

При разных видах гипоксии соотношение между описанными приспособительными реакциями может быть различным. Так, например, при дыхательной и циркуляторной гипоксии ограничены возможности приспособления в системе внешнего дыхания и кровообращения. При тканевой гипоксии неэффективны приспособительные явления в системе транспорта кислорода.

Патологические нарушения при гипоксии. Нарушения, характерные для гипоксии, развиваются при недостаточности или истощении приспособительных механизмов.

Окислительно-восстановительные процессы, как известно, являются механизмом получения энергии, необходимой для всех процессов жизнедеятельности. Сохранение этой энергии происходит в фосфорных соединениях, содержащих макроэргические связи. Биохимические исследования при гипоксии выявили уменьшение содержания этих соединений в тканях. Таким образом, недостаток кислорода приводит к энергетическому голоданию тканей, что лежит в основе всех нарушений при гипоксии.

При недостатке О2 происходит нарушение обмена веществ и накопление продуктов неполного окисления, многие из которых являются токсическими. В печени и мышцах, например, уменьшается количество гликогена, а образующаяся глюкоза не окисляется до конца. Молочная кислота, которая при этом накапливается, может изменять кислотно-основное состояние в сторону ацидоза. Обмен жиров также происходит с накоплением промежуточных продуктов — ацетона, ацетоуксусной и β-оксимасляной кислот (кетоновых тел). Появление продуктов перекисного окисления липидов (ПОЛ) — один из важнейших факторов гипоксического повреждения клетки. Нейтрализация их происходит средствами естественной антиоксидантной защиты, механизмы которой мы стремимся воспроизвести искусственно с целью коррекции гипоксических состояний на тканевом уровне. Накапливаются промежуточные продукты белкового обмена. Увеличивается содержание аммиака, снижается содержание глутамина, нарушается обмен фосфопротеидов и фосфолипидов, устанавливается отрицательный азотистый баланс. Синтетические процессы снижены. Изменения электролитного обмена заключаются в нарушении активного транспорта ионов через биологические мембраны, снижении количества внутриклеточного калия. Важная роль ионов кальция, накопление которых в цитоплазме клеток считается одним из основных звеньев гипоксического повреждения клетки, доказана положительным влиянием блокаторов кальциевых каналов. К метаболическим нарушениям при гипоксии следует отнести и нарушение синтеза медиаторов нервной системы.

Структурные нарушения в клетке при гипоксии возникают в результате описанных выше биохимических изменений. Так, сдвиг рН в кислую сторону и другие нарушения обмена повреждают мембраны лизосом, откуда выходят активные протеолитические ферменты. Их разрушительное действие на клетку, в частности на митохондрии, усиливается на фоне дефицита макроэргов, который делает клеточные структуры еще более уязвимыми. Ультраструктурные нарушения выражаются в гиперхроматозе и распаде ядра, набухании и деградации митохондрий, сохранность которых предопределяет обратимость гипоксического повреждения клетки.

Выше было указано, что основу долговременного приспособления к гипоксии составляет структурно обеспеченная гиперфункция систем Транспорта и утилизации кислорода, а это в свою очередь обусловлено активизацией генетического аппарата. В дифференцированных клетках, особенно коры головного мозга и нейронов дыхательного центра, этот процесс может закончиться истощением.

Чувствительность различных тканей к недостатку кислорода неодинакова и находится в зависимости от следующих факторов:

1. интенсивности обмена веществ, т.е. потребности ткани в кислороде;

2. мощности ее гликолитической системы, т. е. способности вырабатывать энергию без участия кислорода;

3. запасов энергии в виде макроэргических соединений;

4. потенциальной возможности генетического аппарата обеспечивать пластическое закрепление гиперфункции.

Со всех этих точек зрения в самых неблагоприятных условиях находится нервная система.

Нарушения в органах и физиологических системах. Первыми признаками кислородного голодания являются нарушения нервной деятельности. Еще до появления грозных симптомов кислородного голодания возникает эйфория. Это состояние характеризуется эмоциональным и двигательным возбуждением, ощущением собственной силы или, наоборот, потерей интереса к окружающему, неадекватностью поведения. Причина этих явлений лежит в нарушении процессов внутреннего торможения.

При длительной гипоксии наблюдаются более тяжелые обменные и функциональные нарушения в нервной системе. Развивается торможение, нарушается рефлекторная деятельность, расстраивается регуляция дыхания и кровообращения. Потеря сознания и судороги являются грозными симптомами тяжелого течения кислородного голодания.

Нарушения в других органах и системах при гипоксии находятся в тесной зависимости от нарушения регуляторной деятельности центральной нервной системы, энергетического голодания и накопления токсических продуктов обмена веществ.

По чувствительности к кислородному голоданию второе место после нервной системы занимает сердечная мышца. Проводящая система сердца более устойчива, чем сократительные элементы. Нарушения возбудимости, проводимости и сократимости миокарда клинически проявляются тахикардией и аритмией. Недостаточность сердца, а также снижение тонуса сосудов в результате нарушения деятельности вазомоторного центра приводят к гипотензии и общему нарушению кровообращения. Последнее обстоятельство сильно осложняет течение патологического процесса, какой бы ни была первоначальная причина гипоксии.

Нарушение внешнего дыхания заключается в нарушении легочной вентиляции. Изменение ритма дыхания часто приобретает характер периодического дыхания Чейна — Стокса. Особое значение имеет развитие застойных явлений в легких. При этом альвеолярно-капиллярная мембрана утолщается, в ней развивается фиброзная ткань, ухудшается диффузия кислорода из альвеолярного воздуха в кровь.

В пищеварительной системе наблюдается угнетение моторики, снижение секреции пищеварительных соков желудка, кишок и поджелудочной железы.

Первоначальная полиурия сменяется нарушением фильтрационной способности почек.

В тяжелых случаях гипоксии снижается температура тела, что объясняется понижением обмена веществ и нарушением терморегуляции.

В коре надпочечных желез первоначальные признаки активации сменяются истощением.

Более глубокий анализ описанных выше изменений при гипоксии приводит к заключению о том, что одни и те же явления,' будучи, с одной стороны, патологическими, с другой — могут быть оценены как приспособительные. Так, нервная система, обладая высокой чувствительностью к кислородному голоданию, имеет эффективное защитное приспособление в виде охранительного торможения, а это, являясь следствием гипоксии, в свою очередь снижает чувствительность нервной системы к дальнейшему развитию кислородного голодания. Снижение температуры тела и обмена веществ может быть оценено подобным же образом.

Повреждение и защита при гипоксии тесно переплетены, но именно повреждение становится начальным звеном компенсаторного приспособления. Так, снижение рО2 в крови вызывает раздражение хеморецепторов и мобилизацию внешнего дыхания и кровообращения. Именно гипоксическое повреждение клетки, дефицит АТФ являются начальным звеном в событиях, которые в итоге приводят к активации биогенеза митохондрий и других структур клетки и развитию устойчивой адаптации к гипоксии.

Устойчивость к гипоксии зависит от многих причин, в том числе от возраста. Высокую устойчивость новорожденных животных к кислородному голоданию можно продемонстрировать следующим опытом. Если взрослую крысу и новорожденного крысенка одновременно подвергнуть в барокамере действию разреженного воздуха, первой погибнет взрослая крыса, в то время как крысенок еще долго остается живым. Это объясняется тем, что автоматическая деятельность дыхательного центра новорожденного при гипоксии может поддерживаться более старой и примитивной формой обмена — анаэробным расщеплением углеводов. Установлено также, что новорожденный обладает некоторым запасом фетального гемоглобина, который способен выполнять дыхательную функцию при пониженном парциальном давлении кислорода в крови. Однако решающее значение в высокой устойчивости новорожденного к кислородному голоданию имеет менее высокий уровень развития центральной нервной системы. То же можно сказать и о животных, находящихся на ранних ступенях эволюционного развития. Таким образом, в процессе эволюционного и онтогенетического развития наблюдается повышение чувствительности к недостатку кислорода и одновременно развитие более сложных приспособительных реакций.

Известно, что существуют индивидуальные различия чувствительности к гипоксии. В основе этого, по-видимому, лежит много факторов, но один из них интересно привести. Ключевой фермент антиокислительной защиты эритроцитов — супероксиддисмутаза — обладает разной активностью у индивидуумов с различным уровнем устойчивости к гипоксии. У лиц с пониженной устойчивостью к гипоксии наблюдается снижение фонда этого эндогенного антиоксиданта и высокий уровень перекисного метаболизма.

Некоторые состояния, характеризующиеся глубоким торможением центральной нервной системы и снижением обмена веществ (сон, наркоз, гипотермия, зимняя спячка) способствуют снижению чувствительности организма к недостатку кислорода.

Устойчивость к гипоксии можно повысить искусственно. Первый способ заключается в снижении реактивности организма и его потребности в кислороде (наркоз, гипотермия), второй — в тренировке, укреплении и более полном развитии приспособительных реакций в условиях барокамеры или высокогорья. Заслуга разработки метода ступенчатой акклиматизации к высокогорному климату принадлежит Н. Н. Сиротинину.

Тренировка к гипоксии повышает устойчивость организма не только к данному воздействию, но и ко многим другим неблагоприятным факторам, в частности, к физической нагрузке, изменению температуры внешней среды, к инфекции, отравлениям, воздействию ускорения, ионизирующего излучения. Иными словами, тренировка к гипоксии повышает общую неспецифическую резистентность организма.

В тех случаях, когда в организме не нарушена утилизация кислорода тканями, можно вводить кислород. При ряде заболеваний применяют кислород под повышенным давлением (гипербарическая оксигенация). Это создает запасы кислорода, физически растворенного в крови и тканях. Данный способ применим при отравлении угарным газом и барбитуратами, при врожденных пороках сердца, а также во время операций на сухом сердце, т. е. в условиях временной остановки кровообращение.

Возможна коррекция метаболических нарушений с помощью специфических противогипоксических средств (антигипоксантов). Это вещества, стимулирующие перенос электронов в дыхательной цепи (препараты, подобные цитохрому С, гидрохинону), средства, способные ингибировать свободнорадикальное окисление (антиоксиданты). Поскольку гипоксические изменения могут быть обратимыми при нормализации энергетического обмена, находят применение фосфорилированные углеводы, которые создают возможность анаэробного образования АТФ. После того, как было уточнено значение ионов Са в гипоксическом повреждении клетки, началось внедрение в медицинскую практику новой группы лекарственных веществ — блокаторов кальциевых каналов. Вводятся также вещества, усиливающие гликолиз и снижающие потребность организма в кислороде.


Дата добавления: 2018-09-20; просмотров: 552; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!