Поражающие факторы ядерного оружия



 

При ядерном взрыве на организм человека могут воздействовать спе­цифические (первичные) поражающие факторы: ударная волна, световое излучение, проникающая радиация, радиоактивное загрязнение местности, электромагнитное излучение.

1) Ударная волна представляет собой, область резкого сжатия и нагретого воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Источником возникновения ударной волны является высокое давление в центре взрыва.

Воздушная ударная волна ядерного взрыва вызывает поражения людей как в результате прямого действия за счет избыточного давления и скоростного напора, так и косвенно – вторичными снарядами, за счет травмирующего действия летящих обломков зданий, сооружений, осколков стекла и т.п. Все эти поражения вызывают, в основном, механические повреждения.

Ударная волна оказывает свое разрушающее воздействие на здания, сооружения, транспорт, энергетические сети. Общую оценку разрушений, вызванных ударной волной ядерного взрыва, принято давать по степени тяжести разрушений. Для большинства элементов объекта, как правило, рассматриваются три степени: слабое, среднее и сильное разрушение. Для жилых и промышленных зданий берется обычно четвертая степень – полное разрушение.

 

Таблица 2

Характеристика травм в зависимости от величины

избыточного давления во фронте ударной волны

 

Избыточное давление Характер травм Степень тяжести
0,2-0,4 кгс/см2 20-40 кПа Головокружение, головная боль, тошнота, рвота и др. симптомы легкой контузии. Разрыв барабанной перепонки, кровотечение из носа Легкая
0,4-0,6 кгс/см2 40-60 кПа Кратковременная потеря сознания, памяти, адинамия, расстройство речи и др. проявления контузии. Кровотечение из носа и ушей. Переломы, вывихи, ушибы Средней тяжести
0,6-1,0 кгс/см2 60-100 кПа Разрывы внутренних органов, переломы конечностей, шок, повреждение среднего уха. Симптомы контузии с травматической энцефалопатией. Длительная потеря сознания. Нарушение глотания. Расстройство дыхания, падения АД. Разрыв мелких сосудов, альвеол, бронхиол. Кровоподтеки на стороне, обращенной к взрыву Тяжелая
более 1,0 кгс/см2 более 100 кПа Разрывы грудной и брюшной стенок с размозжением внутренних органов. Множественные переломы костей. Отрывы конечностей. Тяжелый шок. Тяжелая контузия Смертельная

 

При слабом разрушении, как правило, объект не выходит из строя; его можно эксплуатировать немедленно или после незначительного (текущего) ремонта. Средним разрушением обычно называют разрушение главным образом второстепенных элементов объекта. Основные элементы могут деформироваться и повреждаться частично. Сильное разрушение объекта характеризуется сильной деформацией или разрушением его основных элементов, в результате чего объект выходит из строя и не может быть восстановлен.

Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

2) Световое излучение ядерного взрыва представляет поток лучистой энергии, включающий ультрафиолетовое, инфракрасное и видимое излучение. Источником светового излучения является светящаяся область взрыва – нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. Действие светового излучения в зависимости от мощности ядерного взрыва может длиться от долей до нескольких десятков секунд.

В зависимости от мощности ядерного взрыва радиус действия светового излучения очень варьирует. При мощности ядерного заряда в 1 килотонну радиус действия менее 2 км; в 100 кт – 15 км; более 1 мт – 25-30 км.

Поражения людей световым импульсом вызывают появление термических ожогов кожных покровов и органа зрения, которые могут приводить к ослеплению пораженных. Термические поражения могут быть обусловлены как непосредственно световым импульсом ядерного взрыва, так и пламенем при возгорании одежды и возникших в очаге пожаров.

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

Защитой от воздействия светового излучения служит произвольная непрозрачная преграда. В случае наличия тумана, дымки, сильной запыленности (задымленности) воздействие светового излучения также снижается.

3) Проникающая радиация представляет собой гамма-излучение (g-излучение) и поток нейтронов, испускаемых из зоны ядерного взрыва в течение единиц или десятков секунд. Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой.

Длина пробега в воздухе гамма-лучей до 4 км. Это излучение обладает высокой проникающей способностью, но ионизирующая способность этого излучения низкая. Длина пробега нейтронов в воздухе зависит от энергии частиц, для быстрых нейтронов составляет до 2 км. Поток нейтронов обладает высокой проникающей и ионизирующей способностью – в 10 раз большей по сравнению с g-излучением.

Проникающая радиация в результате внешнего облучения человека может вызвать острую лучевую болезнь. В материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующего излучения наблюдаются обратимые и необратимые изменения.

От g-излучения хорошо защищают материалы, имеющие элементы с высокой атомной массой (железо, свинец). Нейтроны хорошо поглощаются материалами, содержащими лёгкие элементы (водород, литий, бор).

Идеального однородного защитного материала от всех видов проникающей радиации нет, для создания максимально лёгкой и тонкой защиты приходится совмещать слои различных материалов для последовательного поглощения нейтронов, а затем гамма-излучения (например, многослойная броня танков, в которой учтена и радиационная защита; защита оголовков шахтных пусковых установок из ёмкостей с гидратами лития и железа с бетоном), а также применять материалы с добавками.

4) Радиоактивное загрязнение местности – результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Наиболее сильное загрязнение возникает при наземном ядерном взрыве, при воздушном взрыве радиоактивное загрязнение местности незначительно.

Источники радиоактивного загрязнения местности:

- радиоактивные изотопы деления урана и плутония;

- наведенная радиоактивность – искусственно возникающая при облучении нейтронами радиоактивность окружающей среды (воздуха, почвы, воды, предметов и т.п.);

- остатки непрореагировавшей части ядерного заряда.

 

Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. На радиоактивное заражение местности и воздуха большое влияние оказывает рельеф местности. При наличии возвышенностей и холмов более сильное заражение будет наблюдаться с наветренной стороны. Овраги и лощины заражаются в большей степени в том случае, когда ветер дует вдоль них. При сильном дожде радиоактивные вещества частично смываются потоками воды, поэтому в лощинах и оврагах заражение может усиливаться. Дождь и снегопад способствуют также быстрому осаждению радиоактивных веществ из воздуха, в результате этого воздух становится менее зараженным, но повышается зараженность местности.

Радиоактивные осадки делят на два вида: ранние (локальные) и поздние (глобальные). Ранние осадки выпадают на поверхность земли в течение 24 часов после взрыва. Глобальные осадки выпадают в течение длительного времени на поверхности всего земного шара. Время их воздействия на окружающую среду весьма продолжительно. В связи с естественным процессом распада радиоактивность уменьшается, особенно резко это происходит в первые часы после взрыва.

Люди и животные, оказавшиеся на территории, загрязненной радиоактивными веществами, подвергаются внешнему гамма-облучению, а также воздействию бета-, альфа-излучений радиоактивных веществ (РВ) при попадании их в организм вместе с зараженными воздухом, пищей и водой.

Альфа-частицы – это поток ядер гелия, лишенных электронной оболочки. Пробег в воздухе составляет 5-10 см. В ткани проникает на глубину до 0,1 мм. Оказывает поражающее действие при попадании внутрь. Ионизирующая способность в 20 раз большая, чем g-излучения.

Бета-излучение – это поток электронов. Длина пробега в воздухе – 10-20 м. В ткани человека проникают на глубину 5-7 мм. Оказывает поражение при попадании внутрь и на кожу человека. По ионизирующей способности аналогично g-излучению.

След радиоактивного облака в соответствии с мощностью экспозиционной дозы принято условно делить на четыре зоны: умеренного (А), сильного (Б), опасного (В) и чрезвычайно опасного (Г) заражения (рис. 2).

5) При ядерном взрыве в результате сильных токов в ионизованном радиацией и световым излучением воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). ЭМИ не оказывает прямого влияния на человека, повреждая электроаппаратуру, электроприборы и линии электропередач. Помимо этого большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

 

Дозиметрия

 

Выявление ионизирующего излучения и количественная оценка уровня радиации называется дозиметрией. Для количественной оценки уровня радиации введено понятие дозы излучения. В радиологии определяют следующие категории дозы ионизирующего излучения:

1) экспозиционная доза – это общее количество падающей на объект энергии излучения; измеряется по ионизации воздуха. В СИ измеряется в Кл/кг (при такой дозе излучения в 1 кг воздуха образуются ионы, несущие заряд равный 1 кулону). Внесистемной единицей измерения является Рентген (р). 1 Кл/кг = 3876 р.

2) поглощенная доза – количество энергии ионизирующего излучения, поглощенное единицей массы объекта за все время облучения; не отражает биологический эффект облучения. В СИ измеряется в Грей (Гр) (при такой дозе 1 кг облученного вещества поглощает 1 Дж энергии). Внесистемной единицей измерения является рад (англ. radiation absorbed dose). 1 Гр = 100 рад. О величине поглощенной дозы можно судить по величине экспозиционной дозы. Дпогл = Дэксп х 0,95, отсюда 1 рад » 1 р

3) эквивалентная доза – доза внешнего жесткого рентгеновского излучения, которой соответствует по биологическому эффекту рассматриваемый вариант излучения; отражает биологический эффект излучения. В СИ измеряется в Зиверт (Зв). Внесистемной единицей измерения является бэр (биологический эквивалент рентгена). 1 Зв = 100 бэр. Дэквпогл х WR.

WR для рентгеновских лучей, b, g – излучения = 1.

WR для быстрых нейтронов = 10; WR для a-частиц = 20.

4) эффективная доза – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Разные органы имеют различную чувствительность к радиационному воздействию: например, при одинаковой дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе. Эффективная эквивалентная доза рассчитывается как сумма эквивалентных доз по всем органам и тканям, умноженных на взвешивающие коэффициенты для этих органов, и отражает суммарный эффект облучения для организма. Единица эффективной дозы – Зиверт.

Дэфф = å Дэкв х WТ. WТ для органов и тканей: гонады = 0,2; красный костный мозг = 0,12; щитовидная железа = 0,05; кожа = 0,01.

 

Таблица 3

Основные дозиметрические величины и единицы их измерения

 

Дозиметрическая

величина

Единица, её наименование и обозначение

Соотношение

единиц

Внесистемная СИ
Экспозиционная доза Рентген (Р) Кулон на килограмм (Кл/кг) 1 Кл/кг = 3876 Р
Мощность экспозиционной дозы Рентген в час (Р/час) Ампер на килограмм (А/кг) 1 А/кг = 1,4х107 Р/час
Поглощённая доза Рад (рад) Грей (Гр) 1 Гр = 100 рад
Мощность поглощённой дозы Рад в час (рад/час) Грей в секунду (Гр/с) 1 Гр/с = 3,6х105 рад/час
Эквивалентная доза Бэр (бэр) Зиверт (Зв) 1 Зв = 100 бэр
Мощность эквивалентной дозы Бэр в год (бэр/год); Зиверт в год (Зв/год) Зиверт в секунду (Зв/с) 1 Зв/с = 3,15х109 бэр/год

 

5) коллективная эффективная доза – сумма эффективных доз, полученных всеми членами коллектива; равна сумме индивидуальных эффективных доз. Измеряется в человеко-зивертах (чел-Зв).

Мощность дозы излучения (уровень радиации) – это доза, регистрируемая за единицу времени. Она характеризует интенсивность лучевого воздействия.

Методы дозиметрии:

1. Ионизационный метод основан на способности ионов, образующихся под воздействием ионизирующего излучения, к направленному движению в электрическом поле. Такое поле может создаваться с помощью ионизационной камеры и газоразрядного счетчика.

Ионизационная камера – это ёмкость с двумя изолированными электродами, заполненная воздухом. Попадая в камеру, ионизирующее излучение вызывает образование ионов, которые под воздействием электрического поля направленно движутся к электродам. В камере возникает электрический ток, сила которого пропорциональна дозе ионизирующего излучения.

Газоразрядный счетчик – трубка, заполненная смесью инертных газов с галогенами (бромом) с высоким напряжением между катодом (корпус трубки) и анодом (металлическая нить в центре трубки). Образующиеся в этих условиях ионы обладают высокой кинетической энергией и способны при направленном движении выбивать электроны из молекул газа – эффект вторичной ионизации. К аноду подходит «лавина» электронов, что фиксируется в виде электрического импульса или преобразуется в постоянный электрический ток.

2. Люминисцентный метод основан на способности некоторых веществ накапливать энергию ионизирующего излучения, а затем выделять ее в виде световых вспышек после дополнительного воздействия с помощью ультрафиолетового облучения или высокой температуры. В зависимости от вида воздействия различают:

- фотолюминисцентный метод – при освещении ультрафиолетовым облучением алюмофосфатного стекла, активированного серебром возникают световые вспышки, интенсивность которых пропорциональна полученной дозе ионизирующего излучения и измеряется с помощью фотоумножителя;

- термолюминисцентный метод – при нагревании таблеток фторида лития или фторида кальция возникают световые вспышки, интенсивность которых пропорциональна полученной дозе ионизирующего излучения и измеряется с помощью фотоумножителя.

3) Сцинтилляционный метод основан на том, что некоторые вещества (сернистый цинк, фосфор и другие) при взаимодействии с ионизирующим излучением начинают светиться. Возникающие световые вспышки (сцинтилляции) регистрируются с помощью фотоумножителя.

4) Химический метод основан на свойстве ионизирующего излучения вызывать изменение химического состава некоторых веществ. Например, нитраты превращаются в нитриты, которые в присутствии реактива образуют окрашенное соединение. Интенсивность окрашивания определяется с помощью колориметра.

Приборы, предназначенные для измерения дозы облучения внешним источником, называются дозиметрическими, которые по своему назначению подразделяются на следующие основные типы:

- индикаторы, например ДП-64 и т.д. Их применяют для выявления радиоактивного загрязнения местности;

- рентгенометры-радиометры ДП-3Б, ДП-5В (А,Б) и т.д. Они определяют уровни радиации на местности и загрязненность различных объектов и поверхностей радиоактивными веществами;

- дозиметры ИД-1, ИД-11, ДКП-50, ДП-70М, ДПГ-03 и т.д. Они предназначены для определения индивидуальных доз облучения.

Индикатор-сигнализатор ДП-64 предназначен для постоянного радиационного наблюдения и оповещения о радиоактивном загрязнении местности. Работает в следящем режиме и обеспечивает звуковую и световую сигнализацию при достижении уровня гамма-радиации 0,2 р/ч.

Рентгенометр ДП-3Б предназначендля измерения уровня радиации на местности от 0,1 до 500 р/ч при проведении радиационной разведки. Устанавливается на подвижных объектах (автомобили, вертолеты, катера).

Рентгенометр-радиометр ДП-5В (А,Б) предназначендля измерения уровня радиации на местности от 0,05 мР/ч до 200 Р/ч, а также для измерения степени радиоактивного заражения одежды, кожных покровов, воды, продовольствия, техники, медико-санитарного имущества от 0,05 до 5000 мР/ч.

Химический дозиметр ДП-70М предназначен для измерения индивидуальной дозы гамма или нейтронного облучения людей от 50 до 800 рад.

Комплект измерителей дозы ИД-1 (прямопоказывающий) предназначен для измерения поглощенных доз облучения людей гамма-лучами и нейтронным потоком от 20 до 500 рад. В состав комплекта входят 10 индивидуальных дозиметров и зарядное устройство. Метод дозиметрии – ионизационный.

Комплект ИД-11 предназначен для измерения поглощенной дозы гамма- и нейтронного облучения людей от 10 до 1500 рад. Метод дозиметрии – фотолюминесцентный.

Комплект ДПГ-03 предназначен для измерения поглощенной дозы гамма-излучения от 0,1 до 999 рад. Метод дозиметрии – термолюминесцентный.

Дозиметр карманный прямопоказывающий ДКП-50 предназначен для измерения доз гамма-излучения в диапазоне от 2 до 50 рад при уровнях радиации от 0,5 до 200 р/ч. Метод дозиметрии – ионизационный.


Дата добавления: 2018-09-20; просмотров: 224; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!