Теплообменники из полимерных материалов



Основными материалами для производства теплообменников служат цветные металлы: медь, олово, латунь, алюминиевые сплавы. В настоящее время усилился интерес к разработкам теплообменников из полимерных материалов, обладающих высокой технологичностью, возможностью автоматизации производства, малым весом, дешевизной, коррозионной стойкостью и стойкостью к воздействию химически агрессивных сред. Применение пластмасс экономит остродефицитные материалы, многие ее виды допускают повторное использование.

Известно, что коэффициент теплопроводности l большинства полимерных материалов составляет 0,12…0,40 Вт/(м·К). Однако это не является существенным препятствием для применения пластмасс в конструкции теплообменника. Из выражения для коэффициента теплопередачи k=1/((1/αвоз)+(δ/λ)+(1/ αвод)) видно: в случае теплопередачи через плоскую стенку (коэффициенты теплоотдачи со стороны воды и воздуха равны 1000 и 50 Вт/(м·К) соответственно, теплопроводность и толщина стенки составляют 0,2 Вт/(м·К) и 0,5 мм) будем иметь kпл=42,553 Вт/(м2·К); для такого же случая при λ=400 Вт/(м·К) – kмедь=47,616 Вт/(м2·К); т. е. коэффициент теплопередачи через медную стенку на 10,63% выше, чем через пластмассовую. А при тех же условиях для пластмассовой стенки имеющей λ=1 Вт/(м·К), kпл=46,512 Вт/(м2·К), kмедь=47,616 Вт/(м2·К), т. е. коэффициент теплопередачи через медную стенку на 2,32% выше, чем через пластмассовую. При значении коэффициента теплопроводности более 0,2 Вт/(м·К) появляется возможность изготавливать радиаторы с тепловой эффективностью, почти не уступающей эффективности металлическим. Проблема низкой теплопроводности практически снимается, если использовать такие полимеры, как диабон-F (коэффициент теплопроводности диабона-F равен 20 Вт/(м·К)) – фторсодержащую пластмассу с графитовыми добавками. Поэтому коэффициент теплопередачи пластинчатых теплообменников из диабона-F соизмерим с коэффициентом теплопередачи металлических ТА.

Пластмассовый радиатор может состоять из набранного пакета охлаждающих матриц, каждая из которых состоит из пучка труб, ввариваемых в две опорные пластины (рис.1.14).

:

Рис. 1.14. Охлаждающая матрица пластмассового теплообменника:

1 – опорная пластина; 2 – трубный пучок

 

Пластмасса для теплообменников должна быть стойкой к воздействию температуры, давления, химикатов и коррозии. Этим требованиям соответствуют технические термопласты норил, модифицированный РР0 и ултем полиэфирамид, последний из которых работает при температуре до 170°С. Проведенные испытания показали, что при заданных потерях давления воздуха пластмассовый теплообменник из норила имеет тот же коэффициент теплопередачи, что и медный теплообменник. Термопласты норил и ултем подвергались испытанию аммонийно-содержащим конденсатом (1000 часов при 80°С). При этом пластмассы получили незначительные изменения таких свойств, как пределы прочности при растяжении и изгибе, органические компоненты удалились в виде раствора в незначительном объеме, поверхность пластмассы не изменилась. Благодаря рассмотренным преимуществам пластмассовые теплообменники находят широкое применение в установках химической промышленности и электростанций при эксплуатации агрессивных сред.

Теплообменники из фторопластов работают при температурах до 260°С. Основным недостатком фторопластов считается низкий коэффициент теплопроводности – 0,25 Вт/(мК). К достоинствам теплообменников из фторопластов относятся простота изготовления и сборки, легкость конструкции, химическая пассивность, устойчивость к воздействию кислот и щелочей.

 


Дата добавления: 2018-08-06; просмотров: 291; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!