Классификация бактериальных токсинов.

Министерство сельского хозяйства Российской Федерации

Российский государственный аграрный университет. МСХА

Имени К.А. Тимирязева

 

 

Реферат

Бактериальные токсины

                                                                       Выполнила: студентка 3 курса

                                                                       Технологического факультета

                                                                       Мамонова Ю. А.

                                                                             Преподаватель: Годова Г.В.

москва 2012

Оглавление

ВВЕДЕНИЕ. 3

1. Общие сведения о токсинах. 4

Микотоксины.. 6

2. Классификация бактериальных токсинов. 9

Заключение. 12

Список литературы.. 13

 

ВВЕДЕНИЕ

 

Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом. Все кроме кислорода человек, получает для своей жизнедеятельности из пищи.

Правильная организация питания требует знания, хотя бы в самом общем виде, химического состава пищевого сырья и готовых продуктов питания, представлений о способах их получения, о превращениях, которые происходят при их получении и при кулинарной обработке продуктов питания.

 Все пищевые вещества полезны здоровому организму в оптимальных количествах и оптимальном соотношении. Но в пище всегда имеются микрокомпоненты, которые в относительно повышенных количествах вызывают неблагоприятный эффект. К ним относят, во-первых, так называемые токсиканты – натуральные, присущие данному виду продукта биологически активные вещества, которые могут при определенных условиях потребления вызвать токсический эффект, во – вторых, «загрязнители»- токсичные вещества, поступающие в пищу из окружающей среды вследствие нарушения технологии выращивания (кормление - для животных), производство или хранение продуктов или других причин.

Общие сведения о токсинах

Токсины (от греческого toxikоn - яд), вещества бактериального, растительного или животного происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека. Токсины при попадании в организм вызывают образование антител. (Молекулярная масса токсина свыше 4-5 тыс.; низкомолекулярные вещества не иммуногены.) Токсины входят в состав ядов змей, скорпионов, пауков и др. ядовитых животных, ряда ядовитых растений.

Наиболее распространенные и изученные бактериальные токсины (их известно несколько сотен) подразделяются на экзотоксины и эндотоксины. Экзотоксины выделяются бактериями в процессе их жизнедеятельности в окружающую среду и обладают специфическим действием на организм (к таким токсинам относятся нейротоксины, цитотоксины). Некоторые микроорганизмы выделяют очень сильные токсины, вызывающие ботулизм, столбняк, дифтерию, пищевые токсикоинфекции и др. Эндотоксины высвобождаются после гибели бактерий и представляют собой нормальные продукты их метаболизма (например, ферменты). Такие токсины нарушают у животных и человека обмен аминов биогенных.

Токсины бактерий были открыты в 1888 французским ученым Э. Руи швейцарским ученым А. Йерсеном, получившими название токсины дифтерийной палочки. Этим открытием они создали предпосылки для разработки методов обезвреживания токсинов, а не уничтожения продуцирующих их микроорганизмов. Успешная попытка применения антитоксинов (антител) была предпринята немецким бактериологом Э. Берингом в 1890, установившим, что сыворотка крови животных, иммунизированных сублетальными дозами. Токсины, обладает профилактическими и лечебными свойствами.

В 1924 французский ученый Г. Рамон предложил обезвреживать токсины (с сохранением их иммунных свойств) обработкой формалином, в результате чего образуется неядовитое производное токсина - анатоксин, который при введении в организм способствует выработке иммунитета к соответствующему токсину. В конце 50-х гг. 20 в. с развитием химии и методов их очистки и идентификации появилась возможность не только избирательно модифицировать токсины, но и отделять полученные анатоксины от не прореагировавших исходных токсинов.

Токсины различают и по типу действия на организм. Нейротоксины действуют на различные этапы передачи нервного импульса. Так, некоторые бактериальные токсины нарушают проводимость нервных волокон. Тайпотоксин и b-бунгаротоксин действуют на пресинаптическую мембрану, подавляя выделение медиатора ацетилхолина, кобротоксин и др. Токсины этого класса (их известно несколько десятков; для 30 из них установлена аминокислотная последовательность) блокируют ацетилхолиновый рецептор постсинаптической мембраны. Цитотоксины обладают высокой поверхностной активностью и разрушают биологические мембраны. Такие токсины часто встречаются в ядах змей; по строению они близки нейротоксинам змей, но отличаются от них функционально важными аминокислотами. Цитотоксины могут вызывать лизис (разрушение) клеток крови. Токсины-ингибиторы подавляют активность определенных ферментов и нарушают таким образом процессы обмена веществ. Токсины-ферменты (протеазы, нуклеазы, гиалуронидазы, фосфолипазы и др.) разрушают (гидролизуют) важные компоненты организма - нуклеиновые кислоты, полисахариды, липиды и др. Применение токсинов ограничено получением из них анатоксинов; нейротоксины используют в качестве избирательно действующих агентов при электрофизиологических и клинических исследованиях механизмов передачи возбуждения в нервной системе. Часто термин "Токсины" неправильно распространяют на природные небелковые вещества, нарушающие те или иные функции организма.

Пищевые токсины. Следующую группу токсинов составляют пищевые токсины. Многие люди даже не подозревают, насколько вредным может оказаться неправильное питание, зашлаковывающие организм. Если спиртные напитки мы пьем далеко не каждый день, то пищу мы употребляем ежедневно. То есть и вредные вещества мы употребляем ежедневно. Недаром древняя пословица гласит: «Я есть то, что я ем». В целом ряде случаев нежелательными для организма продуктами оказываются сладости, мучные изделия, жаренная и жирная пища. Вредными или атерогенными являются избыточные животные жиры: сало, сливочное масло, домашняя сметана, а также кокосовое масло, поскольку они способствуют отложению холестериновых бляшек на стенках сосудов.

Существует точка зрения, что организм человека плохо приспособлен к перевариванию мяса, особенно такого, как свинина, баранина. Еще более тяжелой, чем мясо, пищей являются мясные и куриные, рыбные бульоны (которыми принято кормить тяжело больных), а также излюбленные всеми во время праздничных застолий холодцы и заливные. Продукты, образующиеся в организме после употребления мяса и мясных бульонов, вызывают гниение и брожение в кишечнике, что способствует повышению кислотности организма. Все окислительно-восстановительные процессы и функционирование клеток здорового организма протекают нормально в среде со слабощелочной реакцией, что соответствует величине рН=7,2-7,4 (такую же величину имеют наша кровь, межклеточная жидкость, лимфа, слюна). Кислая среда – почва для развития множества болезней, в том числе аллергических, почва для преждевременного старения организма. Созданию щелочной среды в организме способствует употребление растительной пищи с сыром виде, сухофруктов, а также ежедневное употребление воды "Алка-Майн". Большая часть продуктов, которые мы сегодня покупаем в супермаркетах не соответствует требованиям качества и относится к группе генетически модифицированных продуктов (ГМ - продукты).[1-4]

Одна из разновидностей токсинов – митотоксины. Рассмотрим их более подробно.

 

Микотоксины

 

Микотоксины - от греч. mykes-гриб и toxikon-яд, токсичные продукты жизнедеятельности микроскопических (плесневых) грибов.

Известно более 250 видов грибов, продуцирующих несколько сотен микотоксинов. Многие из них обладают мутагенными (в том числе канцерогенными) свойствами. Среди микотоксинов, представляющих опасность для здоровья человека и животных, наиболее распространены афлатоксины (формула I и II), трихотеценовые микотоксины, или трихотецены (III-IV), охратоксины (V), патулин (VI), зеараленон и зеараленол (VII). Большинство микотоксинов – кристаллические вещества (см. таблицу), термически стабильны, хорошо растворимые в органических растворителях. Микотоксины (за исключением охратоксинов) достаточно устойчивы к действию кислот, разрушаются щелочами с образованием нетоксичных или малотоксичных соединений. Биосинтез микротоксинов включает обычно стадию конденсации 1 молекулы ацетил-кофермента А с тремя и более молекулами малонил-кофермента А.

 

Афлатоксины. В эту группу входят более 15 микотоксинов, которые продуцируются грибами Aspergillus flavus и Aspergillus раrasiticus. Основные загрязнители (главным образом токсин В) пищевых продуктов. Высокой токсичностью обладают афлатоксины В1, В2, G1 и G2 (для афлатоксина B1 ЛД50 7,8 мг/кг, макаки, перорально). Афлатоксины – сильные мутагены (в т.ч. гепатоканцерогены), обладают также тератогенным и иммунодепрессивным действием. Токсичное действие обусловлено их взаимодействием с нуклеофильными участками ДНК, РНК и белков.

В ряде стран Африки и Азии, где наблюдаются острые афлатоксикозы у людей, выявлена прямая корреляция между частотой заболевания населения раком печени и содержанием афлатоксинов в пищевых продуктах. Химическая детоксикация кормов аммиаком при повышенном давлении и температуре (США, Франция) или пероксидом водорода (Индия) позволяет снизить содержание афлатоксинов до безопасного уровня. При этом, однако, теряется часть питатательной ценности корма. Перспективна биологическая детоксикация афлатоксинов и других микотоксинов некоторыми видами микроорганизмов. При употреблении животными кормов, загрязненных афлатоксином В1, с молоком выделяется высокотоксичный афлатоксин M1.

Трихотецены. Продуцируются грибами Fusarium spo-rotrichiella, Fusarium solani, Fusarium graminearum и др. Включают более 80 микотоксинов, которые подразделяют на 4 типа: А, В, С и D. Представители группы А – токсин Т-2 и диацетокси-скирпенол, группы В – дезоксиниваленол и ниваленол, группы С – роридин А, группы D – кротоцин. ЛД50 для этих микотоксинов (мыши, перорально) варьирует от 6,7 мг/кг (токсин Т-2) до 46 мг/кг (дезоксиниваленол). Биосинтез трихотеценов осуществляется через лактон мевалоновой кислоты и фарнезил-пирофосфат.

Трихотецены проявляют тератогенные, цитотоксические, иммунодепрессивные, дерматотоксические свойства, действуют на кроветворные органы, центральную нервную систему, вызывают лейкопению, геморрагический синдром, ответственны за ряд пищевых микотоксикозов человека и животных. Токсические свойства обусловлены их участием в подавлении биосинтеза белка. Из всех трихотеценов природными загрязнителями пищевых продуктов являются только 4 (они приведены в качестве представителей группы III и IV).

Патулин. Впервые выделен в 1943 году как антибиотик. Продуцируется грибом Penicillium expansum; ЛД50 17-36 мг/кг (мыши, перорально). Обладает высокими мутагенными свойствами. Ингибирует синтез белка, ДНК, РНК, ферменты, содержащие в активном центре группы SH.

Охратоксины. В эту группу входят охратоксины А, В и С.      Продуцируются грибами Aspergillus ochraceus и Penicillium viridicatum. Наиболее токсичен охратоксин А (ЛД50 3,4 мг/кг, однодневные цыплята, перорально). Другие микотоксины этой группы на порядок менее токсичны. Охратоксин А (им наиболее часто загрязняются пищевые продукты) в чистом виде нестабилен, чувствителен к действию света и кислорода, устойчив в растворах. Эти микотоксины обладают нефротоксичным, тератогенным и иммунодепрессивным действием. Ингибируют синтез белка, нарушают обмен гликогена. Охратоксины ответственны за возникновение нефропатии у свиней.

Зеараленон и его производные. К этой группе относят 15 микотоксинов.        Продуцируются грибом Fusarium graminearum.

Для зеараленона ЛД50 10 000 мг/кг (крысы, перорально). Взаимодействие с эстрадиолсвязывающими рецепторами в клетках-мишенях. Обладают эстрогенными и тератогенными свойствами, а также антибактериальным действием в отношении грамположительных бактерий. В качестве природных загрязнителей встречаются только зеараленон и зеараленол.

Содержание микотоксинов в пищевых продуктах и кормах варьирует в широких пределах и может достигать сотен мкг/кг. Оптимальная температура токсинообразования лежит в пределах от 8-12°С (токсин Т-2) до 27-30 °С (афлатоксины). Для основных микотоксинов в ряде стран установлены ПДК. В пищевых продуктах ПДК афлатоксина B1 0,005, патулина 0,05, токсина Т-2 0,1, дезоксиниваленола 0,5 и 1,0 (в зависимости от вида продукта), зеараленона 1,0 мг/кг. Продуценты афлатоксинов поражают главным образом зерновые, масличные и бобовые культуры; продуценты охратоксинов, зеараленона, трихотеценов типов А и В – зерновые; трихотеценов типа С – грубые корма, богатые клетчаткой; продуценты патулина – фрукты, овощи и продукты их переработки. Ежегодные потери сельскохозяйственной продукции в мире, связанные с загрязнением их микотоксинами, превышают 15 млрд. долл. (1985). Потенциальная опасность загрязнения микотоксинами существует для 1 млрд. т сельскохозяйственной продукции.

Для определения микотоксинов в пробе его извлекают органическим растворителем, осуществляют предварительную очистку, переводят (в случае необходимости) в летучее, флуоресцирующее или окрашенное соединение. На конечном этапе используют различные виды хроматографии, для некоторых микотоксинов - радиоиммунные и иммуноферментные методы.

 

 

Классификация бактериальных токсинов.

Луи Пастером в 1887 г. были проведены опыты доказывающие, что веществами, которые образуются в результате жизнедеятельности микроорганизмов и находятся в питательном бульоне, можно вызывать такие же клинические признаки заболевания, как и при заражении самим возбудителем болезни. Э. Ру и А. Иерсин в своих экспериментах 1889 года подтвердили этот вывод. Дальнейшие исследования показали, что безмикробные, стерильные фильтраты, полученные с жидких питательных сред, где размножались изучаемые микроорганизмы, вызывают клинические проявления и патологические изменения, характерные для столбняка, ботулизма, холеры, скарлатины. Познее выяснилось, что проявление ряда патологических процессов при многих инфекционных заболеваниях вызвано продуктами жизнедеятельности микробов.

Эти продуцируемые микроорганизмами вещества получили название микробных токсинов. Уже к 1890 году были обнаружены токсины двух важнейших патогенных для человека микроорганизмов (вызывающих большой процент смертельного исхода при заболевании) С.diphtheriae - дифтерия и Cl.tetani - столбняк. Постепенно, в ходе экспериментов, все токсины микробной этиологии разделили на две группы. В первую включили токсические продукты связанные со стромой (телом) микробной клетки. Они становятся токсичными только после гибели и разрушения микроорганизмов. Эту группу токсинов выявили у грамотрицательных бактерий и назвали эндотоксинами (эндо - endo - внутри). Для них характерна низкая специфичность действия. При введении экспериментальным животным, все они вызывают схожие клинические и патологические симптомы. Изучение их природы и места локализации в клетке потребовало длительного, интенсивного исследования.

Сейчас установлено, что эндотоксины – это комплекс липополисахаридов с белками, которые находятся в наружных слоях клеточной стенки грамотрицательных бактерий. Во вторую группу отнесли секретируемые или растворимые микробные токсины. Они выделяются в окружающую среду при жизни микроорганизмов и не связаны со стромой последних. Эти токсины оказались чувствительны к нагреванию и являются белками. Так как они присутствуют в среде и не являются структурной частью микроорганизма, то получили название экзотоксины (экзо – exo – снаружи, вне). В экспериментах было доказано, что экзотоксины оказывают специфическое действие на организм, характерное для той или иной болезни. Термины «эндотоксины» и «экзотоксины», которыми называют две вышеуказанные группы токсических веществ не должны вводить в заблуждение.  

В настоящее время есть данные, показывающие, что многие «экзотоксины» связаны с бактериальными клетками во время их роста и высвобождаются только после гибели и лизиса (разрушения) бактерий. Общепринято что, экзотоксины являются белками, а эндотоксины - молекулярными комплексами, содержащими белок, липид и полисахарид. Приведенные выше термины, в настоящее время настолько общеприняты, что отказываться от них никто не хочет. Предложенный М. Далиным и Н. Фишем (1980) термин «мезотоксины», объединяющий те токсины микроорганизмов, что имеют общие характеристики первой и второй групп, не получил признания. В таблице 1 дана дифференциальная характеристика экзо- и эндотоксинам.

Таблица 1 Сравнительная характеристика экзо- и эндотоксинов. (по Н. Колычеву, 1991 г.)
Экзотоксины Эндотоксины
1 Легко проникает в окружающую среду из микробных клеток. Прочно связаны с телом микробной клетки.
2 Яды высшей активности. Менее ядовиты.
3 В химическом отношении представляет собой белки. Чаще липосахариды в соединении с белком.
4 Термолабильны. Термостабильны.
5 Разрушаются протеолитическими ферментами. Сравнительно устойчивы к действию протеолитических ферментов.
6 Под воздействием формалина переходят в анатоксины. Формалин мало понижает токсичность

 

 

Однако, биохимики, разделение микробных токсинов на группы, проводят в соответствии с данными об их природе и химических свойствах. Они различают группу простых и сложных белков (протеотоксины), группу со стероидной конфигурацией (афлотоксины) и группу липополисахаридных комплексов, токсическую активность которых определяет липидный компонент (липид А). Такой биохимический, а в последствии иммунохимический подход позволил теоретически и биохимически обосновать получение антитоксинов (Э. Беринг, 1892г.). С их помощью смогли отличать один токсический микробный биополимер от другого, микробиологи – отличать in vitro (в пробирке) токсигенные штаммы от нетоксигенных, патофизиологи понимать (в какой-то степени) механизм поражающего действия токсинов. П. Эрлих (P. Ehrlich), используя антитоксины, как молекулярные зонды, впервые выявил молекулярную характеристику микробных токсинов. Позднее Г. Рамон (G. Ramon) опираясь на его теоретические разработки, организовал производство анатоксинов.              Исследования по антитоксинам позволили провести разделение, дифференциацию токсинов на серотипы (серогруппы, сероварианты) в соответствии с их антигенной структурой. Однако при серологическом анализе доказана некоторая идентичность токсинов, вырабатываемых бактериями разных видов и родов. Выяснилось, что антигенно-родственными оказались холерный токсин и термолабильные энтеротоксины, продуцируемые E.coli, Sal.typhimurium. Установлена антигенная похожесть энтеротоксинов выделяемых бактериями видов Sh.plexneri и Sh.dysenteriaе. Высокая степень сходства отмечается у токсинов (гемолизина) Cl.tetani, Bac.cereus и Diplococcus pneumonie и St.pyogenes, СL.perfringens.

Проведенные иммунологические исследования позволяют рассматривать микробные токсины как совокупность серогрупп, которые сходны в каких-то структурах по своему молекулярному строению. Стало ясно, что микробные токсины можно группировать не только по сходству происхождения (эндо- или экзо-), химической природе (белки, липополисахариды), по сходству в молекулярной организации, по его антигенной структуре, но и потому, какую роль играют отдельные структурные единицы или молекулы в патогенезе интоксикации на клеточном или субклеточном уровнях. Так, например, выявлено, что экзотоксины шигелл, синегнойной палочки, дифтерийной бактерии почти одинаковым образом блокируют синтез белков на субклеточном уровне, причем два последних выводят из строя один и тот же фермент - трансферазу II. Обнаружилась функциональная общность холерного токсина и термолабильного токсина E.coli, поражающее действие которых связано со способностью активировать клеточную аденилатциклазу.

Благодаря методическому подходу по разделению (дифференциации) микробных токсинов по указанному принципу были уточнены некоторые особенности микробных токсинов. Получены данные, что они отдельными участками своих молекул иммитируют (подражают) структуре ферментов, гормонов, нейромедиаторов макроорганизма. Возможно, эта особенность и обеспечивает микробным токсинам способность вмешиваться в обменные процессы у макроорганизма (человека).

Заключение

Структура, механизмы действия и древность происхождения бактериальных токсинов свидельствуют о том, что их эволюция началась еще в сообществах одноклеточных микроорганизмов, где они играли роль сигнальных молекул, способных действовать на большом расстоянии от бактериальной клетки без ослабления силы сигнала. Эволюция токсинов происходила путем нарастания сложности их молекул, вызванной дупликациями и слияниями генов, кодирующих белки их отдельных доменов. Древность бактериальных токсинов позволяет поставить под сомнение антропозность отдельных инфекционных болезней, например, холеры, коклюша и дифтерии. Видимо целесообразно вести поиск природных резервуаров возбудителей этих болезней в сообществах простейших организмов. Субъединичная структура токсинов, где одна из субъединиц играет роль лиганда, другая вызывает токсический эффект, позволяет осуществлять исследования, направленные на получение нового поколения медицинских иммунобиологических препаратов, не имеющих аналогов в природе. В настоящее время разработаны подходы для вмешательства в структуру молекул токсинов, позволяющие получать иммунотоксины для прицельного терапевтического воздействия на злокачественные клетки крови, и токсины с измененной специфичностью и/или с более высокой токсичностью в отношении отдельных видов насекомых. Токсичность ботулинического токсина предельна не только для бактериальных токсинов, но и для природных токсических веществ. При модификации токсинов наиболее вероятно изменение спектра их целей. LD 50гибридных и модифицированных токсинов даже при повышении их токсичности для отдельных экспериментальных животных, будет находиться в пределах, характерных для токсических веществ данного диапазона молекулярных масс.

 

Список литературы

1.Тутельян В.А., Кравченко Л.В. Микотоксины. —АМН СССР. —М.: Медицина, 1985 —211 с.

 

2. Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки: В 3 т. // Пер. с англ. под ред. Г.П. Георгиева и Ю.С. Ченцова. — М., 1994.

 

3. Антонов Н.С. Химическое оружие на рубеже двух столетий. М., 1994.

 

4. Вертиев Ю.В. Бактериальные токсины: биологическая сущность и

происхождение // Журн. микробиол. — 1996. — № 3. — С. 43-46.

 

5. Езепчук Ю.В. Патогенность, как функция биомолекул. — М., 1985.

 

6. Супотницкий М.В. Микроорганизмы, токсины и эпидемии. М., 2005


Дата добавления: 2018-08-06; просмотров: 1436; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!