Трубчатые печи, основные показатели трубчатой печи. Тепловой баланс печи.



Классификация процессов

 

Классификация основных процессов химической технологии может быть проведена на основе различных признаков.

В зависимости от основных законов, определяющих скорость процес­сов, различают:

1. Гидромеханические процессы,скорость которых определяется зако­нами гидродинамики — науки о движении жидкостей и газов. К этим процессам относятся перемещение жидкостей, сжатие и перемещение газов, разделение жидких и газовых неоднородных систем в поле сил тяжести (отстаивание), в поле центробежных сил (центрифугирование),. а. также под действием разности давлений при движении через пористый слой (фильтрование) и перемешивание жидкостей.

2. Тепловые процессы,протекающие со скоростью, определяемой зако­нами теплопередачи— науки.о способах распространения тепла. Такими процессами являются нагревание, охлаждение,, выпаривание и конден­сация паров. К тепловым процессам могут быть снесены и. процессы охла­ждения до температур более низких, чем температура окружающей среды (процессы умеренного и глубокого охлаждения). Однако вследствие многих специфических особенностей. эти процессы выделены ниже в отдельную группу холод и.л ьных процессов.

Скорость тепловых процессов в значительной степени зависит от гидро­динамических условий (скоростей, режимов течения)), при которых осу­ществляется перенос тепла между обменивающимися теплом средами..

3. Массообменные (диффузионные) процессы,характеризующиеся пе­реносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по­этому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе про­цессов, описываемых законами массопередачи, относятся абсорбция, пере­гонка (ректификация), экстракция из растворов, растворение [и экстрак­ция из пористых твердых тел, кристаллизация, адсорбция и сушка.

Протекание процессов массообмена тесно связано с гидродинамиче- скими условиями в фазах и на границе их раздела и часто — с сопутствую­щими массообмену процессами переноса тепла (теплообмена).

4. Химические (реакционные) процессы,которые протекают со ско­ростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций под­чиняется законам макрокинетики иопределяется наиболее медленным изпоследовательно протекающих химического взаимодействия и диффузии. Общие закономерности протекания химических процессов и принципы устройства реакторов рассматриваются в специальной литературе *.

5. Механические процессы,описываемые законами механики твердых тел. Эти процессы применяются в основном для подготовки исходных твер­дых материалов и обработки конечных твердых продуктов, а также для транспортирования кусковых и сыпучих материалов. К механическим процессам относятся измельчение, транспортирование, сортировка (клас­сификация) и смешение твердых веществ.

Особую группу механических процессов составляют процессы перера­ботки химических продуктов в изделия — прессование, литье, экстру­зия и др. Эти процессы и машины для их проведения специфичны для про­изводств синтетических материалов и рассматриваются в специальных курсах.

По способу организации основные процессы химической технологии делятся на периодические и непрерывные.

Периодические процессы проводятся в аппаратах, в которые через определенные промежутки времени загружаются исходные материалы; после их обработки из этих аппаратов выгружаются конечные продукты. По окончании разгрузки аппарата и его повторной загрузки процесс повторяется снова. Таким образом, периодический процесс харак­теризуется тем, что все его стадии протекают в одном месте (в одном аппарате), но в разное время.

Непрерывные процессы осуществляются в проточных аппаратах. Поступление исходных материалов в аппарат и выгрузка конечных продуктов производятся одновременно и непрерывно. Следова­тельно, непрерывный процесс характеризуется тем, что все его ста­дии протекают одновременно, но разобщены в пространстве, т. е. осуществляется в различных частях одного аппарата или же в различных аппаратах, составляющих данную установку.

Известны также комбинированные процессы. К ним относятся непрерывные процессы, отдельные стадии которых проводятся периодически, либо периодические процессы, одна или несколько стадий которых протекают непрерывно.

Основные преимущества непрерывных процессов по сравнению с пери­одическими следующие: 1) нет перерывов в выпуске конечных продуктов, т. е. отсутствуют затраты времени на загрузку аппаратуры исходными материалами и выгрузку из нее продукции; 2) более легкое автоматическое регулирование и возможность более полной механизации; 3) устойчивость режимов проведения и соответственно большая стабильность качества получаемых продуктов; 4) большая компактность оборудования, что сокращает капитальные затраты и эксплуатационные расходы (на ре­монты и пр.); 5) более полное использование подводимого (или отводи­мого) тепла при отсутствии перерывов в работе аппаратов; возможность использования (рекуперации) отходящего тепла.

Благодаря указанным достоинствам непрерывных процессов при их проведении увеличивается производительность аппаратуры, уменьшается потребность в обслуживающем персонале, улучшаются условия труда и повышается качество продукции. По этим причинам в. многотоннажных химических производствах имеется тенденция осуществлять преимуще­ственно непрерывные процессы. Периодические процессы сохраняют свое значение главным образом в - производствах относительно небольшого масштаба (в том числе в опытных) с разнообразным ассортиментом продук­ции, где применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших капитальных затратах.

Непрерывные процессы отличаются от периодических по распределе­нию времени пребывания частиц среды в аппарате. В периодически дей­ствующем аппарате все частицы среды находятся одинаковое время, в то время как в непрерывно действующем аппарате времена пребывания их могут значительно различаться. По распределению времен пребы­вания различают две теоретические (предельные) модели аппаратов непре­рывного действия: идеального вытеснения и идеального смешения.

В аппаратах идеального вытеснения все частицы движутся в заданном направлении, не перемешиваясь с движущимися впереди и сзади частицами и полностью вытесняя находящиеся впереди частицы потока. Все частицы равномерно распределены по площади попе­речного сечения такого аппарата и действуют при движении подобно твер­дому поршню. Время пребывания всех частиц в аппарате идеального вы­теснения одинаково.

В аппаратах идеального смешения поступающие частицы сразу же полностью перемешиваются с находящимися там части­цами, т. е. равномерно распределяются в объеме аппарата. В резуль­тате во всех точках объема мгновенно выравниваются значения параметров, характеризующих процесс. Время пребывания частиц в аппарате идеаль­ного смешения неодинаково.

Реальные непрерывно действующие аппараты представляют собой аппараты промежуточного типа. В них время пребы­вания частиц распределяется несколько более равномерно, чем в аппара­тах идеального смешения, но никогда не выравнивается, как в аппаратах идеального вытеснения. Более подробно вопросы структуры потоков в ап­паратах и их влияния на протекание процессов рассмотрены в главах II и X.

Процессы могут быть также классифицированы в зависимости от изме­нения их параметров (скоростей, температур, концентраций и др.) во вре­мени. По этому признаку процессы делятся на установившиеся (стационарные) и неустановившиеся (нестацио­нарные, или переходные).

В установившихся процессах значения каждого из параметров, ха­рактеризующих процесс, постоянны во времени, а в неустановившихся — переменны, т. е. являются функциями не только положения каждой точки в пространстве, но и времени. Анализ характеристик неустановившихся процессов представляет наибольший интерес для целей автоматического регулирования. В химической технологии неустановившимися являются менее распространенные периодические процессы. Для непрерывных про­цессов изменение параметров во времени должно учитываться при изменении режима работы и в период пуска установок, однако этот период является кратковременным и в расчете им пренебрегают.


 

2. Теплопередача, виды и режимы теплообмена.

Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них:

  • теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твёрдого тела);
  • теплопередача (теплообмен от горячей жидкости к холодной через разделяющую их стенку);
  • конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией);
  • термомагнитная конвекция

3. Теплопроводность, дифференциальное уравнение теплопроводности

4. Уравнение теплопроводности плоской стенки.

5. Тепловое излучение, закон Стефана-Больцмана

 

 

 

6. Конвекция, закон Ньютона

 

 

7. Конвективный теплообмен, дифференциальное уравнение конвективного теплообмена (уравнение Фурье-Кирхгофа).

8. Теплопередача, основное уравнение теплопередачи.


9. Классификация теплообменных аппаратов.

В аппаратах, где идет нагрев или охлаждение, происходит теплообмен между двумя потоками, при этом один из них нагревается, другой охлаждается. Поэтому их называют теплообменными аппаратами вне зависимости от того, что является целевым назначением аппарата – нагрев или охлаждение, какие потоки обмениваются теплом, происходит ли при этом только нагрев и охлаждение или же теплообмен сопровождается испарением или конденсацией.

Применительно к нефтеперерабатывающей промышленности, теплообменные аппараты классифицируются по таким основным признакам, как способ передачи тепла и назначение.

1. В зависимости от способа передачи тепла аппараты делятся на следующие группы:

— поверхностные теплообменные аппараты, в которых передача тепла между теплообменивающимися средами осуществляется через поверхность, разделяющую эти среды;

— аппараты смешения, в которых передача тепла между теплообменивающимися средами происходит путем их соприкосновения. Для изготовления теплообменных аппаратов смешения требуется, как правило, меньше металла; кроме того, во многих случаях они обеспечивают более эффективный теплообмен. Однако, несмотря на эти преимущества, аппараты смешения часто нельзя использовать вследствие недопустимости прямого соприкосновения потоков.

2. В зависимости от назначения аппараты делятся на следующие группы:

— теплообменники, в которых один поток нагревается за счет использования тепла другого, получаемого в процессе и подлежащего охлаждению. В таких теплообменниках нагрев одного и охлаждение другого потока позволяет сократить расход подводимого извне тепла (сократить расход топлива, греющего водяного пара и т. д.) и охлаждающего агента. К этой группе аппаратов относятся теплообменники для нагрева нефти на установке, осуществляемого за счет использования тепла отходящих с установки дистиллятов, остатка, а также промежуточного циркуляционного орошения. Сюда относятся также котлы-утилизаторы, где получают водяной пар за счет использования тепла нефтепродуктов, дымовых газов или катализатора на установках каталитического крекинга. К этой группе относятся и регенераторы холода;

— нагреватели, испарители, кипятильники, в которых нагрев или нагрев и частичное испарение осуществляются за счет использования высокотемпературных потоков нефтепродуктов и специальных теплоносителей (водяной пар, пары углеводородов, специальные высококипящие жидкости и др.). В таких аппаратах нагрев или испарение одной среды является целевым процессом, тогда как охлаждение

горячего потока является побочным и обусловливается необходимостью нагрева исходного холодного потока. Примером аппаратов этой группы могут служить нагреватели сырья, использующие тепло

водяного пара, кипятильники, при помощи которых в низ ректификационной колонны подводится тепло, необходимое для ректификации, и т. д.;

— холодильники и конденсаторы, предназначенные для охлаждения жидкого потока или конденсации и охлаждения паров с использованием специального охлаждающего агента (вода, воздух, испаряющийся аммиак, пропан и др.). Охлаждение и конденсация в этих аппаратах являются целевыми процессами, а нагрев охлаждающего агента — побочным. К таким аппаратам относятся холодильники и конденсаторы любой нефтеперерабатывающей установки, предназначенные для охлаждения и конденсации получаемых продуктов.

При регенерации тепла того или иного продукта его окончательное охлаждение до температуры, требуемой для безопасного транспорта и хранения, обычно завершается в холодильниках.

В зависимости от конкретных условий применения, к промышленным теплообменным аппаратам выдвигаются различные требования:

— обеспечение наиболее высокого коэффициента теплопередачи при возможно меньшем гидравлическом сопротивлении;

— компактность и наименьший расход материала;

— надежность и герметичность в сочетании с разборностью и доступностью поверхности теплообмена для механической очистки от загрязнения;

— унификация узлов и деталей;

— технологичность механизированного изготовления широких рядов поверхностей теплообмена для различного диапазона рабочих температур, давлений и т. д.


Трубчатые печи, основные показатели трубчатой печи. Тепловой баланс печи.


Дата добавления: 2018-08-06; просмотров: 348; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!