Способы описания случайных процессов



Тема №1 Сигналы и помехи в системах связи  

ОБЩИЕ СВЕДЕНИЯ О РАДИОТЕХНИЧЕСКИХ

СИГНАЛАХ И ПОМЕХАХ

Классификация радиотехнических сигналов и помех

Прежде чем приступить к изучению каких – либо явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большему количеству признаков. Предпримем подобную попытку применительно к радиотехническим сигналам и помехам.

Основные понятия, термины и определения в области радиотехнических сигналов устанавливает государственный стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы весьма разнообразны. Их можно классифицировать по целому ряду признаков.

1. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы делятся на одномерные и многомерные. На практике наиболее распространены одномерные сигналы. Они обычно являются функциями времени. Многомерные сигналы состоят из множества одномерных сигналов, и кроме того, отражают свое положение в n-мерном пространстве. Например, сигналы, несущие информацию об изображении какого-либо предмета, природы, человека или животного, являются функциями и времени и положения на плоскости.

2. По особенностям структуры временного представления все радиотехнические сигналы подразделяются на аналоговые, дискретные и цифровые. В лекции №1 уже были рассмотрены их основные особенности и отличия друг от друга.

3. По степени наличия априорной информации все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Примером детерминированного радиотехнического сигнала может служить гармоническое (синусоидальное) колебание, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известно. По сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать. Они обычно применяются для испытаний систем связи, радиоканалов или отдельных устройств.

Детерминированные сигналы подразделяются на периодические и непериодические (импульсные). Импульсный сигнал – это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Периодические сигналы бывают гармоническими, то есть содержащими только одну гармонику, и полигармоническими, спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы называются полигармоническими.

Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени неизвестны и не могут быть предсказаны с вероятностью, равной единице. Как ни парадоксально на первый взгляд, но сигналом несущим полезную информацию, может быть только случайный сигнал. Информация в нем заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. На практике любой радиотехнический сигнал, в котором заложена полезная информация, должен рассматриваться как случайный.

4. В процессе передачи информации сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражается в их названии: сигналы модулированные, демодулированные (детектированные), кодированные (декодированные), усиленные, задержанные, дискретизированные, квантованные и др.

5. По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

6. По принадлежности к тому или иному виду систем передачи информации различают телефонные, телеграфные, радиовещательные, телевизионные, радиолокационные, управляющие, измерительные и другие сигналы.

Рассмотрим теперь классификацию радиотехнических помех. Под радиотехнической помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем радиосвязи помеха – это любое случайное воздействие на полезный сигнал, ухудшающее верность воспроизведения передаваемых сообщений. Классификация радиотехнических помех возможна также по ряду признаков.

1. По месту возникновения помехи делят на внешние и внутренние. Основные их виды были уже рассмотрены в лекции №1.

2. В зависимости от характера взаимодействия помехи с сигналом различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, которая суммируется с сигналом. Мультипликативной называется помеха, которая перемножается с сигналом. В реальных каналах связи обычно имеют место и аддитивные, и мультипликативные помехи.

3. По основным свойствам аддитивные помехи можно разделить на три класса: сосредоточенные по спектру (узкополосные помехи), импульсные помехи (сосредоточенные во времени) и флуктуационные помехи (флуктуационные шумы), не ограниченные ни во времени, ни по спектру. Сосредоточенными по спектру называют помехи, основная часть мощности которых находится на отдельных участках диапазона частот, меньших полосы пропускания радиотехнической системы. Импульсной помехой называется регулярная или хаотическая последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы радиотехнических цепей или работающих рядом с ними устройств. Импульсные и сосредоточенные помехи часто называют наводками.

Между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию.

 

Случайные процессы

 

Как указывалось выше, отличительная черта случайного сигнала состоит в том, что его мгновенные значения заранее не предсказуемы. Практически все реальные случайные сигналы и помехи представляют собой хаотические функции времени, математическими моделями которых являются случайные процессы, изучаемые в дисциплине статистическая радиотехника. Случайным процессом  принято называть случайную функцию аргумента t, где t текущее время. Случайный процесс обозначается прописными буквами греческого алфавита , , . Допустимо и другое обозначение, если оно заранее оговорено. Конкретный вид случайного процесса, который наблюдается во время опыта, например на осциллографе, называется реализацией этого случайного процесса. Вид конкретной реализации x(t) может задаваться определенной функциональной зависимостью аргумента t или графиком.

В зависимости от того, непрерывные или дискретные значения принимают аргумент t и реализация х, различают пять основных видов случайных процессов. Поясним эти виды с указанием примеров.

Непрерывный случайный процесс характеризуется тем, что t и х являются непрерывными величинами (рис. 2.1,а). Таким процессом, например, является шум на выходе радиоприемного устройства.

Дискретный случайный процесс характеризуется тем, что t является непрерывной величиной, а х - дискретной (рис. 2.1,б). Пере­ход от  к  происходит в любой момент времени. Примером такого процесса является процесс, характеризующий состояние системы массового обслуживания, когда система скачком в произвольные моменты времени t переходит из одного состояния в другое. Другой пример это результат квантования непрерывного процесса только по уровню.

Рис. 2.1

Случайная последовательность характеризуется тем, что t яв­ляется дискретной, а х — непрерывными величинами (рис. 2.1,в). В качестве примера можно указать на временные выборки в конкретные моменты времени из непрерывного процесса.

Дискретная случайная последовательность характеризуется тем, что t и х являются дискретными величинами (рис. 2.1,г). Такой процесс может быть получен в результате квантования по уровню и дискретизации по времени. Такими являются сигналы в цифровых системах связи.

Случайный поток представляет собой последовательность точек, дельта-функций или событий (рис. 2.1, д, ж) в случайные моменты времени. Этот процесс широко применяется в теории надёжности, когда поток неисправностей радиоэлектронной техники рассматривается как случайный процесс.

 

Способы описания случайных процессов

Существуют два способа представления случайных процессов. Во первых, случайный процесс представляется в виде совокупности или ансамбля всех своих возможных реализаций. То, какая конкретно реализация будет наблюдаться в испытании, является случайным событием. На рис. 2.2,а показан случайный процесс , в ансамбль которого входят три реализации x1(t), x2(t), x3(t), наблюдаемые в испытании с определенными вероятностями. Во вторых, случайный процесс  рассматривается как n-мерная случайная величина или n-мерный вектор ( , ,..., ), каждая проекция которого является отсчетом случайного процесса в моменты времени t1,t2,...,tn (рис.2.2,б). Эти проекции вектора или отсчеты процесса будем называть сечениями случайного процесса:

                                                  (2.1)

Сечения (2.1) являются случайными величинами, так как из-за случайного выбора реализации их конкретные значения до опыта неизвестны. На рис. 2.2. пунктиром показан возможный ход случайного процесса и соответственно случайные величины , ,...,  на осях возможных значений

При достаточно большом п задание процесса n-мерным вектором эквивалентно заданию самого процесса. В теории случайных процес­сов доказывается, что для используемых на практике процессов чис­ло n конечно. Этот вывод базируется на том, что реализации слу­чайного процесса имеют ограниченную ширину спектра.

Рис. 2.2

Представление случайного процесса n-мерным вектором позволя­ет свести вероятностное описание процесса к описанию n-мерной случайной величины. Рассмотрим функцию распределения, плотность вероятности и числовые характеристики непрерывного случайного процесса, представленного n-мерным вектором.

В соответствии с этим n-мерная функция распределения случайного процесса  определится выражением

               (2.2)

Выражение (2.2) показывает, что в общем случае  зависит от 2n аргументов: от n наперед заданных возможных значений сечений ( ) и от п моментов времени (t1, t2, ..., tn), в ко­торых эти сечения берутся.

Многомерная плотность вероятности по определению равна част­ной производной n-го порядка от функции распределения  по возможным значениям

                     (2.3)

Плотность вероятности n-го порядка в общем случае также зависит от тех же 2п аргументов. Произведение двумерной плотности вероятности на dx1dx2

характеризует вероятность того, что реализация x(t) случайного процесса в моменты времени t1, t2 пройдет через интервалы . Это означает, что двумерная плотность вероятности содержит сведения о связи между двумя сечениями слу­чайного процесса, проведенными в моменты t1 и t2.

Одномерная плотность вероятности , где х1 = х, t1 = t определяет закон распределения случайной величины, полученной в результате сечения случайного процесса в момент t1= t. Индекс 1 у времени и возможного значения здесь опускается, потому что сечение одно и надобность в индексе отпадает.

Представление случайного процесса n-мерным вектором позволя­ет получить такие числовые характеристики случайного процесса, как математическое ожидание, дисперсия, корреляционная функция. Эти характеристики, являющиеся соответственно начальными момента­ми первого порядка, центральным моментом второго порядка, смешан­ным центральным моментом второго порядка, зависят от моментов вре­мени, в которые берутся сечения случайного процесса, и поэтому являются моментными функциями времени.

Математическое ожидание  и дисперсия  требуют для своего определения использование одномерной плотности вероятности:

                                                         (2.4)

                     (2. 5)

Для определения корреляционной функции требуется использование двумерной плотности вероятности

.        (2.6)

Математическое ожидание определяет траекторию положения координаты центра тяжести одномерной плотности вероятности. Дисперсия характеризует изменение значения средней удельной мощности флуктуаций процесса во времени. Корреляционная функция характеризует случайный процесс с двух сторон: с одной стороны определяет среднею удельную мощность флуктуаций, а с другой – устанавливает степень линейной связи между сечениями случайного процесса, взятыми соответственно в моменты времени t1 и t2.


Дата добавления: 2018-08-06; просмотров: 654; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!