Сложение положительных рациональных чисел коммутативно и ассоциативно,



Понятие обыкновенной дроби; понятие положительного рационального числа. Множество положительных рациональных чисел как расширение множества натуральных чисел.

Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из т отрезков, равных п-ой части отрезка е, то длина отрезка х может быть представлена в виде Е, где символ — называют дробью (и читают «эм энных»).

В записи дроби числа m и n - натуральные, m называется числителем, n - знаменателемдроби.

Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателяилиравен ему.

Для того чтобы дроби и выражали длину одного того же отрезка, необходимо и достаточно, чтобы выполнялось ра­венство тq = nр.

Две дроби и называются равными, если тq = пр.

Если дроби равны, то пишут

Теорема.Равенство дробей является отношением эквивалентности.

Доказательство. Действительно, равенство дробей рефлексивно: = ,так как равенство mn = nm справедливо для любых натуральных чисел n и m.

Равенство дробей симметрично: если , то , так как из mq = nр следует, что рn = qm (m, n, р, qÎN ). Оно транзитивно: если и , то .В самом деле, так как ,то mq = nр, а так как , то рs = qr. Умножив обе части равенства mq = nр на s, а равенства рs = qr на n, получим mqs = nрs и nрs = qrs. Откуда mqs =qrn или ms = nr. Последнее равенство означает, что . Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно, оно является отношением эквивалентности.

Из определения равных дробей вытекает основное свойство дроби. Напомним его.

Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

На этом свойстве основано сокращение дробей и приведение дробей к общему знаменателю.

Сокращение дробей - это замена данной дроби другой, равной данной, но с меньшим числителем и знаменателем.

Если числитель и знаменатель дроби одновременно делятся только на единицу,то дробь называют несократимой.

Положительным рациональным числом называется класс равных дробей, а каждая дробь, принадлежащая этому классу, есть запись (представление) этого числа.

Например, множество дробей - это один класс, множество дробей это другой класс и т.д.

Дроби одного класса выражают длину одного и того же отрезка. Но длина отрезка должна представляться единственным числом. Поэтому считают, что равные дроби - это различные записи одного и того же положительного рационального числа.

Положительным рациональным числом называется класс равных дробей, а каждая дробь, принадлежащая этому классу, есть запись (представление) этого числа.

Например, о дроби мы должны говорить, чтоона является за­писью некоторого рационального числа. Однако часто для краткости говорят : - это рациональное число

Множество всех положительных рациональных чисел принято обозначать символом Q+. Определим на этом множестве отношение равенства.

Определение.Если положительное рациональное число а представлено дробью , а положительное рациональное число b другой дробью , то а = b тогда и только тогда, когда тq = nр.

Если положительное рациональное число а представлено дробью , а положительное рациональное число b - дробью ,то их суммой называется число а + b, которое представляется дробью , т.е. + = (1)

В определении суммы рациональных чисел мы использовали их представления в виде дробей с одинаковыми знаменателями. Если же числа а и b представлены дробями с различными знаменателями, то сначала надо привести их к одному знаменателю, а затем применять правило (1).

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q+) а + b= b + а;

("а, b, с Î Q+) (а + b)+ с = а + (b+ с)

Если положительное число а представлено дробью , а положительное рациональное число b дробью , то их произведением называется число а b , которое представляется дробью .

Определение сложения положительных рациональных чисел дает возможность определить отношение «меньше» на множествеQ+.

Определение. Пусть а и b - положительные рациональные числа. Считают, что число b меньше числа а, если существует такое положительное рациональное число с, что а= b + с.

В этом же случае считают, что число а больше числа b. Пишут b < а, а> b.

Так определенное отношение «меньше» обладает рядом свойств, которые мы приводим без доказательства.

1. Отношение «меньше» на множестве Q+ антисимметрично и транзитивно, т.е. является отношением порядка, а множество Q+ упорядоченным множеством.

2. Если рациональные числа а и b представлены дробями и (т.е. дробями, имеющими одинаковые знаменатели), то а < b в том и только в том случае, когда m < р.

3. Если рациональные числа а и b представлены дробями и (т.е. дробями, имеющими разные знаменатели), то а <b в том и только в том случае, когда т q < nр.

4. В множестве положительных рациональных чисел нет наименьшего числа.

5. Между любыми двумя различными числами а и b из Q+ заключено бесконечно много чисел этого же множества. Это свойство называют свойством плотности множества Q+.

6. В множестве положительных рациональных чисел нет наибольшего числа.

Вычитание положительных рациональных чисел определяется как операция, обратная сложению, т.е. это такая операция, которая удовлетворяет условию: а - b = с тогда и только тогда, когда а = b + с.

Разность а - b положительных рациональных чисел существует тогда и только тогда, когда b < а. Если разность а - b существует, то она единственна.

Используя определение и условие существования разности, можно получить правило вычитания положительных рациональных чисел,представленных дробями и , где т < р : /

Деление положительных рациональных чисел определяется как операция, обратная умножению, т.е. это такая операция, которая удовлетворяет условию: а:b=с тогда и только тогда, когда а = bс.

Из этого определения и правила нахождения произведения положительных рациональных чисел можно получить правило деления положительных рациональных чисел, представленных дробямии : .

Из этого правила следует, что частное положительных рациональных чисел всегда существует.

Множества натуральных чисел

Чтобы множество Q+ положительных рациональных чисел явля­юсь расширением множества N натуральных чисел, необходимо вы­полнение ряда условий.

Первое условие- это существование между N иQ+ отношения включения. Докажем, что

N ÌQ+.

Пусть длина отрезка х при единичном отрезкеевыражается натуральным числомm. Разобьем единичный отрезок направных частей. Тогдаn-ая часть единичного отрезка будет укладываться в отрезке Х точноmпраз, т.е. длина отрезкахбудет выражена дробью . Значит, длина отрезках выражается и натуральным числомm, и положительным рациональным числом . Но это

должно пбыть одно и то же число. Поэтому целесообразно считать, что дроби вида являются записями натурального числаm.

Следовательно, N ÌQ+.

Так, например, натуральное число 6 можно представить в виде следующих дробей: 6/1 12/2, 18/3 24/4, 30/5 и т.д.

Отношение между множествами N и Q+ представлено на рисунке 129.

Рисунок 129.

Числа, которые дополняют множество на­туральных чисел до множества положительных рациональных, называются дробными.

Второе условие, которое должно быть выполнено при расширении множества натуральных чисел, - это согласованность операций, т.е. результаты арифметических дейст­вий, произведенных по правилам, существующим для натуральных чисел, должны совпадать с результатами действий над ними, но вы­полненных по правилам, сформулированным для положительных рациональных чисел. Нетрудно убедиться в том, что и это условие выполняется.

Пусть аиb- натуральные числа,а+b- их сумма, полученная по правилам сложения в N. Вычислим сумму чиселаиbпо правилу сложения вQ+. Так как а = ,b= , то + = =а+bУбедиться в том, что второе условие выполняется и для других операций, можно аналогично.

Третье условие, которое должно быть выполнено при расшире­нии множества натуральных чисел - это выполнимость вQ+опера­ции, не всегда осуществимой вN. И это условие соблюдено: деление, которое не всегда выполняется в множествеN, в множествеQ+вы­полняется всегда.

Сделаем еще несколько дополнений, раскрывающих взаимосвязи между натуральными и положительными рациональными числами.

1. Черту в записи дроби — можно рассматривать как знак деления.

Действительно, возьмем два натуральных числа mиnи найдем их частное по правилу (4) деления положительных рациональных чисел:

m:n = : = = .

Обратно, если дана дробь , то ее можно рассматривать как част­ое натуральных чиселmиn:

= = : = m:n.

2. Любую неправильную дробь можно представить либо в виде на­турального числа, либо в виде смешанной дроби.

Пусть - неправильная дробь. Тогдаm>n. Еслиmкратноn, то в этом случае дробь является записью натурального числа. Если числоm не кратноn, то разделимm наnс остатком:

m=nq + r, гдеr<n.

Подставим nq + rвместоmв запись и применим правило (1) сложения положительных рациональных чисел: = = + =q+ .

Так как r<n, то дробь - правильная. Следовательно, неправильная дробь — оказалась представленной в виде суммы нату­рального числаqи правильной дроби . Это действие называется

выделением целой части из неправильной дроби. Например, = = + =3+ .

Сумму натурального числа и правильной дроби принято записывать без знака сложения: т.е. вместо

3 + пишут 3 и называют та­кую запись смешанной дробью.

Справедливо также утверждение: всякую смешанную дробь можно записать в виде неправильной дроби. Например:

3 =3+ = + = = .


Дата добавления: 2018-08-06; просмотров: 1958; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!