Границы и область применения.



Содержание.

 

1.Введение. 2

2.Виды сварки и их классификация. 4

3.Термитная сварка. 6

3.1.Принцип сварки. 6

3.2.Границы и область применения. 9

3.3.Выбор основных и присадочных материалов. 13

3.4.Техника сварки. 14

3.5.Основные элементы устройств для термитной сварки. 17

5. Лазерная сварка. 18

5.1.Сущность и основные преимущества сварки лазерным лучом. 18

5.2.Технологические особенности процесса лазерной сварки. 22

5.3.Качество и свойства лазерной сварки. 31

6.Заключение. 33

7.Список литературы. 34

 


Введение.

 

Сварочная металлургия отличается от других металлургических процессов высокими температурами термического цикла и малым временем существования сварочной ванны в жидком состоянии, т.е. в состоянии, доступном для металлургической обработки металла сварного шва. Кроме того, специфичны процессы кристаллизации сварочной ванны, начинающиеся от границы сплавления, и образования изменённого по своим свойствам металла зоны термического влияния.

В своей работе я отразил сущность лишь основных и наиболее общих процессов сварки, хотя постарался изложить их как можно подробней и интересней.

Сварка сопровождается комплексом одновременно протекающих процессов, основными из которых являются: тепловое воздействие на металл в зоне термического влияния, термодеформационные плавления, металлургической обработки и кристаллизации металла в объёме сварочной ванны.

Физическая свариваемость характеризует принципиальную возможность получения монолитных сварных соединений и главным образом относится к разнородным металлам.

В процессе сварки имеет место непрерывное охлаждение. Характер структурных превращений при изотермической выдержке. При непрерывном охлаждении, значение инкубационного периода в 1.5 раза больше, чем при изотермическом. С увеличением скорости охлаждения получаемая структура в зоне изотермического влияния измельчается, твёрдость её повышается. Если скорость охлаждения превышает критическую скорость, образование структур закалки неизбежно.

Закалённые структуры в аппаратостроении являются крайне нежелательными: отличаются высокой твёрдостью, хрупкостью, плохо обрабатываются, склонны к образованию трещин.

Если скорость охлаждения ниже критической скорости, образование закалочных структур исключается. В зоне термического влияния наиболее желательными являются пластичные, хорошо обрабатываемые структуры типа перлита или сорбита. Поэтому получение качественных соединений непременно связано с достижением желаемых структур в основном регулированием скорости охлаждения.

Подогрев способствует перлитному превращению и является действенным средством исключения закалочных структур. Поэтому он служит в качестве предварительной термической обработки сварных соединений (нагрев до сварки и в процессе её). Меняя скорость охлаждения, можно получить желаемую твёрдость в зоне термического влияния.

В некоторых случаях появляется необходимость увеличения скорости охлаждения. Путём ускоренного охлаждения удаётся измельчить зерно, повысить прочностные свойства и ударную вязкость в зоне термического влияния. С этой целью находит применение метод сопутствующего охлаждения. Сварное соединение в процессе сварки с обратной стороны дуги охлаждается водой или воздушной смесью, что способствует получению крутой ветви скорости охлаждения.

Виды сварки и их классификация.

 

Сварка - технологический процесс соединения твёрдых материалов в результате действия межатомных сил, которое происходит при местном сплавлении или совместном пластическом деформировании свариваемых частей.

Сваркой получают изделия из металла и неметаллических материалов (стекла, керамики, пластмасс и др.). Изменяя режимы сварки, можно наплавлять слои металла различной толщины и различного состава. На специальном оборудовании в определенных условиях можно осуществлять процессы, противоположные по своей сущности процессу соединения, например огневую, или термическую, резку металлов.

Современные способы сварки металлов можно разделить на две большие группы: сварка плавлением, или сварка в жидкой фазе, и сварка давлением, или сварка в твёрдой фазе. При сварке плавлением расплавленный металл соединяемых частей самопроизвольно, без приложения внешних сил соединяется в одно целое в результате расплавления и смачивания в зоне сварки и взаимного растворения материала. При сварке давлением для соединения частей без расплавления необходимо значительное давление. Граница между этими группами не всегда достаточно чёткая, например возможна сварка с частичным оплавлением деталей и последующим сдавливанием их (контактная электросварка). В предлагаемой классификации в каждую группу входит несколько способов. К сварке плавлением относятся: дуговая, плазменная, электрошлаковая, газовая, лучевая и др.; к сварке давлением - горновая, холодная, ультразвуковая, трением, взрывом и др. В основу классификации может быть положен и какой-либо др. признак. Например, по роду энергии могут быть выделены следующие виды сварки электрическая (дуговая, контактная, электрошлаковая, плазменная, индукционная и т. д.), механическая (трением, холодная, ультразвуковая и т. п.), химическая (газовая, термитная), лучевая (фотонная, электронная, лазерная).


Термитная сварка.

Принцип сварки.

Термитами называются порошкообразные горючие смеси метал­лов с окислами металлов, способные сгорать с выделением зна­чительного количества тепла и развивать при этом весьма высо­кую температуру. Термиты изобретены в конце позапрошлого столетия. Они применяются для производства некоторых металлов и сплавов.

Важной областью применения термитов является сварка ме­таллов. Горючими металлами в термитных смесях могут служить металлы с большой теплотой образования окислов, например алю­миний, магний, кремний (в особенности аморфный). Источником кислорода в термитных смесях являются окислы металлов со сравнительно небольшой теплотой образования, например, оки­слы железа, марганца, никеля, меди и т. п. В качестве источника кислорода в сварочных термитах обычно применяется железная окалина, примерно отвечающая по составу магнитной окиси-за­киси железа Fe304, содержащей 27,6% кислорода и 72,4% железа.

Наиболее важным для сварки является алюминиевый термит, который состоит из металлического алюминия в форме грубозер­нистого порошка или крупы, обычно с величиной зерна около 1 мм, и из железной окалины примерно с той же величиной зерна. По внешнему виду алюминиевый термит представляет собой сыпучую грубозернистую смесь из белых зерен (алюминий) и черных зерен (железная окалина). Для зажигания термита его необходимо нагреть хотя бы в одной точке до температуры порядка 1000° С. Начавшееся горение протекает весьма бурно, быстро распростра­няется на весь объем термитной смеси и проходит по реакции:

3Fe2О4 + 8Al = 4Al2О3+9Fe                                   (1)

Термит сгорает полностью за 20—30 сек. Время горения зави­сит от грануляции, т. е. размеров зерен смеси: чем мельче зерно, тем быстрее заканчивается процесс горения. Экзотермическая реакция сгорания 1 кг алюминиевой термитной смеси развивает около 750 ккал.

Из приведенной выше реакции сгорания термита легко рас­считать, что на 1 кг термитной смеси необходимо 237 г алюминия и 763 г железной окалины. Этот расчет относится к химически чи­стым компонентам. В действительности термитную смесь изготов­ляют из возможно более дешевых материалов: из технического алюминия низших марок или алюминиевого лома с содержанием алюминия 88—98%. Железную окалину берут обычно из цехов горячей прокатки стали, в которых она является отбросом про­изводства. Такая окалина может содержать различное количе­ство кислорода. Поэтому действительный состав термитных сме­сей может меняться в довольно широких пределах в зависимости от химического состава применяемых материалов, который сле­дует проверять химическим анализом. Наиболее распространен­ный состав термитной смеси для материалов среднего качества: 23% алюминия и 77% железной окалины.

Несмотря на то, что алюминиевый термит выделяет сравни­тельно небольшое количество тепла, в среднем 750 ккал на 1 кг смеси (1 кг хорошего каменного угля дает 7000 ккал), термитная смесь развивает при сгорании весьма высокую температуру. Это объясняется тем, что сгорание термита идет исключительно за счет вещества самой смеси и 1 кг термита при сгорании дает столько же, т. е. 1 кг продуктов сгорания. Уголь же сгорает за счет кислорода воздуха, и при сжигании 1 кг угля в воздухе получается около 14 кг продуктов сгорания. По теоретическому расчету реакции сгорания термита с учетом теплоемкости про­дуктов сгорания обеспечивается температура ~ 3000°С; такую же температуру показывают и непосредственные измерения. Поэтому продукты сгорания термита — железо (температура плав­ления около 1500°С) и окись алюминия А12O3 (температура плав­ления 2050°С) получаются в расплавленном, жидком и сильно перегретом виде.

Если сжечь термит в огнеупорном тигле, то по окончании реакции горения продукты реакции — жидкая сталь и шлак, состоящий главным образом из окиси алюминия, быстро разде­лятся на два слоя: металл — шлак в соответствии с удельным весом продуктов реакции; из 1 кг термитной смеси образуется 550 г расплавленной стали и 450 г шлака — расплавленной окиси алюминия. В сварочные термитные смеси, помимо алюминия и железной окалины, обычно вносят различные добавки с целью улучшить состав и повысить прочность термитного металла, увеличить общий выход металла при сжигании смеси, несколько понизить температуру термитной реакции.

Для раскисления термитного металла, улучшения его химиче­ского состава и повышения механической прочности в термитные смеси обычно вводят ферросплавы, главным образом ферроси­лиций и ферромарганец. Меняя количество этих присадок, можно изменять в широких пределах химический состав и механические свойства термитного металла, например предел прочности можно изменять от 40 до 75 кг/мм2. Для увеличения выхода термитного металла и некоторого снижения температуры термитной реакции в термитную смесь для сварки обычно добавляют технически чистое железо в мелких кусочках в количестве 10—15% веса термитной смеси. Для этой цели чаще всего применяют обсечку — отход при производстве проволочных гвоздей. Окончательный состав тер­митной сварочной смеси определяют расчетом в зависимости от характера работы и состава металла, подлежащего сварке.

 


Границы и область применения.

Рассмотрим применение и области использования термитной сварки на примере сварки рельсового стыка — самом обычном применении термитной сварки. При сварке давлением жидкие продукты выливают через край тигля (рисунок 1, а); при этом место сварки сначала заливается жидким шлаком, смачивающим металл и дающим на его поверх­ности тонкую пленку, препятствующую прилипанию термитного металла к основному. Жидкий металл поступает в форму вслед за шлаком, но не сваривается с основным металлом и может быть удален по окончании сварки. Жидкий металл используется лишь как носитель тепла для разогрева места сварки. После того как жидкая смесь выпущена в форму и стык достаточно разогрет, приступают к осадке. Для этой цели применяют стяжные прессы, приводимые вручную рычажными ключами. При повороте ключей приходят в действие винтовые стяжки, создающие давление и производящие осадку разогретых деталей. Стяжной пресс (рисунок 2) надевают на место сварки до выпуска расплавленной смеси.

Поверхность сварного стыка должна быть защищена от попа­дания термитного шлака, для чего соединяемые поверхности тщательно пригоняют, отшлифовывают и перед сваркой стягивают со значительным давлением посредством стяжного пресса. Так как рельсовая сталь обладает ограниченной свариваемостью в пласти­ческом состоянии, то в стык перед сваркой закладывают пластинку по профилю рельса из мягкой низкоуглеродистой стали с тщательно зачищенными и отшлифованными поверхностями. При разогреве стыка термитом усиливают давление, поворачивая стяжные гайки пресса, и производят осадку.

Способ термитной сварки давлением в том виде, как он описан выше, в настоящее время почти не применяется, так как этот способ сложен, кропотлив, требует очень тщательной пригонки свариваемых поверхностей и дает значительный разброс резуль­татов в отношении прочности стыка. Также трудоемка операция осадки и установки стяжного процесса.

Значительно дешевле и удобнее сварка плавлением, так назы­ваемый способ промежуточного литья (рисунок 1, б). В этом случае рельсы заформовывают со значительным зазором (10—12 мм) в стыке, поэтому особенно тщательной пригонки и шлифования соединяемых поверхностей не требуется. Расплавленную смесь выпускают через дно тигля. Поступающий в форму перегретый расплавленный металл оплавляет основной металл у сварного стыка и сплавляется с ним в одно целое. Термитный шлак, посту­пающий в форму вслед за металлом, служит лишь для дополни­тельного подогрева сварного стыка и замедления его охлаждения по окончании сварки. Осадочного давления и применения стяж­ного пресса не требуется, рельсы остаются неподвижными в про­цессе сварки. Поэтому возможно, например, сваривать рельсы, уложенные в пути, без расшивки, что позволяет сваривать плети неограниченной длины, вваривать куски рельсов в местах вырезки поврежденных стыков и т. п.

Рисунок 1. - Схемы термитной сварки рельсового стыка

 

а — давлением; б — плавлением (промежуточное литье); в — комбинированный способ.

Недостатки способа промежуточного литья:

1) несколько увеличенный расход термита;

2) образование литой структуры ме­талла в сварном стыке, не уплотняемого осадоч­ным давлением и поэто­му склонного к образо­ванию пор и раковин;

3) все сечение стыка для надлежащего разогрева получает значительный облив, удаление которо­го вызывает известные затруднения. Приходит­ся обрубать и шлифовать поверхность катания и боковые грани головки рельса.

При комбинирован­ном способе металл вы­пускают через дно тигля, заливку жидким металлом ведут лишь до нижней грани головки рельса (рисунок 1, в), а отшлифованные торцы головок собирают со вкладной пластинкой низкоуглероди­стой стали. При выпуске жидкой смеси головку заливают шлаком и сваривают давлением при последующей осадке стяжным прес­сом, в то время как шейка и подошва рельса оказываются сварен­ными плавлением по способу промежуточного литья. Комбиниро­ванный способ является наилучшим и в настоящее время находит преобладающее применение. Результаты термитной сварки рельсовых стыков достаточно удовлетворительны. Сварку легко вести в полевых условиях. Несмотря на это, термитная сварка рельсовых стыков на желез­ных дорогах применяется в ограниченных размерах и в настоящее время почти вытеснена контактной сваркой. Причиной служит довольно высокая стоимость термитной смеси, дефицитность ме­таллического алюминия, низкая производительность термитной сварки. Этот вид сварки сохранил свое значение для рельсовых стыков трамвайных путей, так как в условиях города другие методы сварки рельсовых стыков трудноприменимы.

 

Рисунок 2. - Стяжной пресс для рельсового стыка

 

1 — стяжная штанга; 2 — стяжная гайка; 3 — за­жимная гайка; 4 — термитный тигель; 5 — крышка тигля.

Термитную сварку можно использовать для ремонта крупных стальных и чугунных деталей. При сварке чугуна применяют специальный термит со значительным содержанием ферросилиция. Посредством термитной сварки можно приливать отломанные части стальных деталей, например зубья крупных шестерен, наплавлять поверхности и т. п. Термитная сварка позволяет изготовлять стальные отливки, на месте в любых, даже полевых условиях, что в ряде случаев может представлять практический интерес.


 


Дата добавления: 2018-08-06; просмотров: 246; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!