Факторы, которые влияют на скорость реакции

Скорость химической реакции.

Закон действующих масс. Химическое равновесие.

                                Гомогенные и гетерогенные реакции

 Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называется химическая система, в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется гетерогенной. Соответственно химическая реакция называется гомогенной, если реагенты находятся в одной фазе. Если реагенты находятся в разных фазах, то химическая реакция называется гетерогенной.

 Поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой.      Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции –величина положительная.

 Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями. Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым, в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частиц W =k).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скорость лимитирующей стадией).

 

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

     

 

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

υ = — ΔC/Δt [моль/л·с]

Факторы, которые влияют на скорость реакции

1) природой реагирующих веществ (энергия активации);

2) концентрацией реагирующих веществ (закон действующих масс);

3) температурой (правило Вант-Гоффа);

4) наличием катализаторов (энергия активации);

5) давлением (реакции с участием газов);

6) степенью измельчения (реакции, протекающие с участием твердых веществ);

7) видом излучения (видимое, УФ, ИК, рентгеновское).

· Зависимость скорости реакции от природы вещества.

Имеет большое значение строение электронной оболочки атома, тип химической связи и ее прочность в молекулах, структура вещества, прочность его кристаллической решетки. Известно, что натрий будет активнее взаимодействовать с водой, чем, например, олово. Поэтому и скорость взаимодействия натрия с водой выше скорости взаимодействия олова с водой.

· Закон действующих масс. В 1865 г. профессор Н. Н. Бекетов впервые высказал

гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции: «... притяжение пропорционально произведению действующих масс». Эта гипотеза нашла подтверждение в законе действия масс, который был установлен в 1867 г. двумя норвежскими химиками К. М. Гульдбергом и П. Вааге. Современная формулировка закона действия масс такова: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Если исследуемый процесс представить в виде:

а А + b В = продукты, то скорость химической реакции можно выразить кинетическим уравнениемυ = k·[A]a·[B]b или υ = k·CaA·CbB

Здесь [A] и [B] (CA и CB )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k.

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

· Реакция активируется термично, т.е. энергией теплового движения молекул.

· Концентрация реагентов распределена равномерно.

· Свойства и условия среды в ходе процесса не меняются.

· Свойства среды не должны влиять на k.

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которая называется лимитирующей.

Каждая реакция имеет свой порядок. Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок. Например, в выражении скорости химической реакции для процесса а А + b В = продукты υ = k·[A]a·[B]b

a – порядок по реагенту А

b — порядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Закон действующих масс справедлив лишь для наиболее простых по своему механизму реакций, протекающих в газах или растворах. Часто уравнение реакции не отражает ее механизма. Сложные реакции можно представить как совокупность простых процессов, протекающих последовательно или параллельно. Закон действующих масс справедлив для каждой отдельной стадии реакции, но не для всего взаимодействия в целом. Та стадия процесса, скорость которой минимальна, лимитирует (определяет) скорость реакции, в общем. Поэтому закон действующих масс для лимитирующей стадии процесса приложим и ко всей реакции в целом.

 

Константа скорости химической реакции не зависит от концентрации реагентов, а определяется природой реагирующих веществ и условиями протекания реакций (температурой, наличием катализатора). Для конкретной реакции, протекающей при данных условиях, константа скорости есть величина постоянная.

 

· Зависимость скорости реакции от давления

определяется уравнением Клапейрона – Менделеева, которое связывает концентрацию и давление:

pV = nRT, откуда    С = p/RT

Таким образом, изменение концентрации в системе, а следовательно и скорости реакции имеет прямую зависимость от изменения давления. Эта зависимость актуальна в первую очередь для процессов, идущих с участием газов. Например, для реакции первого порядка, увеличение давления в 2 раза вызовет рост концентрации вещества в 2 раза, что непременно изменит υ – она станет в 2 раза больше.

· Зависимость скорости реакции от площади поверхности

касается гетерогенных реакций. Вещества реагируют быстрее, если площадь поверхности, на которой может происходить взаимодействие веществ больше. Растворяя вещество, мы уменьшаем его размеры до размеров молекулы, увеличивая тем самым площадь поверхности. Поэтому химические процессы между веществами, находящимися в растворенном, жидком или газообразном состоянии имеют большую скорость, чем взаимодействия между твердыми веществами.

· Зависимость скорости реакции от температуры

определяется правилом Вант-Гоффа и уравнением Аррениуса. Повышая температуру, мы сообщаем молекулам дополнительную энергию (увеличивая, тем самым, энергию  активации), которая способствует протеканию реакции. Аррениус предположил, что реагировать между собой могут только те молекулы, которые находятся в активной форме, образующиеся из обычных молекул. Такие молекулы были названы активными, а энергия, необходимая для перевода обычных молекул в активное состояние, энергией активации.

В самом деле, в ходе химической реакции разрушаются одни и возникают другие молекулы, происходит изменение химических связей, т.е. перераспределение электронной плотности. Если бы старые связи в ходе реакции сразу полностью разрушались, то на это потребовалось бы большое количество энергии, и реакция протекала крайне медленно. Как показали исследования, в ходе реакции система проходит через переходное состояние, через образование активированного комплекса. Например, ход реакции

АВ + DC = AD + BC

можно представить схемой

A – B + D ‑ C A . . . B : : : : D . . . C A B │ │ D C
Исходные молекулы   Активированный комплекс   Продукты реакции

В активированном комплексе старые связи еще не разорваны, но уже ослаблены, новые связи наметились, но еще не образовались. Время существования его не велико (10‾14 – 10‾11 с). При распаде комплекса образуются либо продукты реакции, либо исходные вещества. Для образования переходного комплекса необходима энергия. Система в переходном состоянии имеет более высокую энергию, чем в исходном и конечном состояниях.

Энергия, необходимая для перехода вещества в состояние активированного комплекса, называется энергией активации.

Образование активированного комплекса определяется энергией молекул. Молекула,  энергия которой достаточна для образования активированного комплекса, называется активной. Доля таких молекул зависит от температуры. При высоких температурах доля активных молекул, энергия которых равна или выше энергии активации, велика и, соответственно, растет доля молекул способных к активным столкновениям с образованием активированного комплекса, т.е. реакции идут быстро. Чем выше энергия активации, тем меньше доля частиц, способных к активному взаимодействию. Экзотермические реакции протекают с меньшей энергией активации, чем эндотермические (рис.18). Высокая энергия активации (высокий энергетический барьер) является причиной того, что многие химические реакции при невысоких температурах не протекают, хотя термодинамическивозможны (ΔG < 0).

Итак, энергия активации – это энергия, необходимая для перехода частиц в состояние активированного комплекса. Частицы, энергия которых равна или выше энергии активации, называются активными. С ростом температуры растет доля этих частиц и соответственно скорость реакции. С увеличением энергии активации уменьшается доля активных молекул и скорость реакции.

Энергия активации – это количество дополнительной энергии, необходимой для перехода системы из исходного состояния в состояние активированного комплекса.

 

Рис. 1. Энергетическая диаграмма экзотермической реакции

Рис. 2. Энергетическая диаграмма эндотермической реакции

Число частиц, входящих в активированный комплекс, определяет молекулярность данной стадии реакции.

В переходном состоянии старые химические связи ослаблены, но окончательно не разорваны, а новые связи начали образовываться, но еще не сформировались. Неустойчивый активированный комплекс (т.к. обладает избытком энергии) существует очень короткое время. Он распадается с образованием исходных веществ или продуктов реакции.

Переходное состояние возникает в ходе как прямой, так и обратной реакции (рис. 3). Энергетически оно отличается от исходных веществ на величину энергии активации прямой реакции, а от конечных – на энергию активации обратной реакции. Разность энергий активации прямой и обратной реакций равна изменению внутренней энергии (тепловому эффекту) реакции:

®

DНр = Еа - Еа

Рис.3. Соотношение между энергиями активации прямой

и обратной реакций и теплового эффекта

 

Чем выше температура, тем больше в системе активных молекул, тем выше скорость реакции.

Предэкспоненциальный множитель

Из уравнения Аррениуса следует, что k = А при Еа = 0. Можно было бы предположить, что при этом условии каждое столкновение частиц приводит к химической реакции. Кинетическая теория газов позволяет рассчитать число столкновений частиц в единицу времени (z). Как показывает опыт, не каждое столкновение даже активных молекул приводит к реакции. Необходимо еще одно условие протекания реакции – определенная ориентация молекул, благоприятствующая перераспределению электронной плотности. Поэтому предэкспоненциальный множитель А включает в себя фактор ориентации молекул (вероятностный фактор) Рор :

А = z Рор

Вероятностный фактор уменьшается с ростом числа и сложности реагирующих частиц от доли единицы до 10-9.

Таким образом, предэкспоненциальный множитель отражает частоту столкновения и ориентацию реагирующих частиц.

При низких температурах химические реакции почти не протекают: k(T) 0. При очень высоких температурах константа скорости стремится к предельному значению: k(T) A. Это соответствует тому, что все молекулы являются химически активными и каждое столкновение приводит к реакции.

Энергию активации можно определить, измерив константу скорости при двух температурах. Из уравнения (4.2) следует:

. (4.3)

Более точно энергию активации определяют по значениям константы скорости при нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в логарифмической форме

Также удобно пользоваться эмпирическим правилом, которое сформулировал Якоб Вант-Гофф: увеличение температуры на каждые 10 градусов, приводит к росту скорости реакции в 2 – 4 раза. Правило имеет математическое выражение:

 

 

где υT1 и υT2 скорости реакции при температурах Т1 и Т2

γ — температурный коэффициент реакции, значения которого лежат в интервале от 2 до 4.

· Зависимость скорости реакции от присутствия катализатора

Катализ – это любое изменение скорости реакции под действием катализатора. Он может быть положительным и отрицательным. Суть катализа – генерирование активного субстрата или реагента с участием катализаторов.

Катализатор представляет собой вещество, которое селективно ускоряет химическую реакцию, вступая при этом в промежуточную стадию, но регенирируясь к ее концу (к моменту образования конечных продуктов). Например, в биохимической среде в качестве катализаторов выступают ферменты.

Если такое вещество замедляет химическую реакцию, то оно называется ингибитором.

Влияние катализатора на скорость реакции основывается на том, что он изменяет энергию активации Еа или А. Понижение энергии активации под действием катализатора схематично представлено на рисунке ниже:

влияние катализатора на энергию активации

 

Видно, что веществам А и В требуется большое количество энергии, чтобы образовать конечные продукты. Но в присутствии катализатора для получения конечных продуктов требуется гораздо меньше энергии, т.к. идет понижение полной энергии активации, и тем самым, увеличение скорости реакции. Обращаю ваше внимание на то, что энергии как начальных, так и конечных веществ остаются одинаковыми в обеих реакциях.

Теория каталитических реакций основана на следующих положениях:

а) катализ применим для реакций, в которых для данных условий энергия Гиббса отрицательна (G < 0);

б) в присутствии катализатора изменяется механизм реакции, она протекает через новые стадии с невысокой энергией активации;

в) при катализе не изменяется тепловой эффект реакции;

г) для обратимых реакций катализатор не влияет на равновесие, не меняет константы равновесия и равновесных концентраций;

д) катализатор действует селективно (избирательно).

 

 

 

 На основе взглядов Аррениуса были разработаны две теории кинетики: теория активных соударений на базе молекулярно-кинетических представлений и теория активированного комплекса

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

· Реакции происходят при столкновении частиц реагентов, которые обладают      определённой энергией.

· Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.

· К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.

· Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.

· Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Теория активированного комплекса основана на анализе движения ядер системы реагирующих частиц. Все молекулы, запас энергии которых не ниже энергетического барьера реакции, находятся в особом состоянии, которое принято называть переходным, или состоянием активированного комплекса. Можно предположить, что система в состоянии активированного комплекса характеризуется тем, что в ней уже нет исходных веществ, но нет еще и продуктов реакций; исходные вещества переходят в продукты реакции.
Образование активированного комплекса всегда требует затраты некоторого количества энергии, что вызвано, во-первых, отталкиванием электронных оболочек и атомных ядер при сближении частиц и, во-вторых, необходимостью построения определенной пространственной конфигурации атомов в активированном комплексе и перераспределения электронной плотности. Таким образом, по пути из начального состояния в конечное система должна преодолеть своего рода энергетический барьер. Энергия активации реакции приближенно равна повышению средней энергии активированного комплекса над средним уровнем энергии реагентов.
Химическое равновесие


Константа равновесия, выраженная через равновесные концентрации Kc или через парциальные давления Kр, принимает вид:
При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная.

 

 Равновесие можно сместить внешним воздействием, руководствуясь принципом Ле Шателье: если на равновесную систему оказывать внешнее воздействие, то равновесие смещается в сторону, противодействующую этому воздействию.

1. Влияние температуры. Для реакций, идущих с уменьшением энтальпии (экзотермических), повышение температуры будет препятствовать протеканию прямого процесса, то есть смещать реакцию в сторону исходных веществ. Эндотермические реакции при этом будут смещаться в сторону конечных продуктов.

Например, при обычных условиях реакция N2 + O2 не идет (?H > 0), но повышение температуры может сделать эти реакцию осуществимой.

Реакция CO + 1/2O2 = CO2, H < 0 с повышением температуры будут смещаться в сторону исходных веществ.

2. Влияние давления. Если реагируют газообразные вещества, то при неизменном числе молей начальных и конечных реагентов повышение общего давления не приведет к смещению равновесия. Если число молей при реакции меняется, то изменение общего давления приведет к смещению равновесия. В частности, реакция 2CO + O2 = 2CO2, протекающая с уменьшением ?n, при повышении общего давления сместится в сторону образования СO2.

3. Влияние концентраций. В тех реакциях, в которых лучше оперировать концентрациями (реакции в растворах), увеличение концентраций исходных веществ приводит к смещению равновесия в сторону конечных продуктов и наоборот. Так, в реакции этерификации (образование сложного эфира)
увеличение концентрации уксусной кислоты или этанола увеличивает выход этилацетата, а добавление в систему воды приводит к омылению, т. е. образованию исходных продуктов.

 

 

 

 


 

 

 

 

 

 


Дата добавления: 2018-08-06; просмотров: 714; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!