Операционные системы реального времени и Windows NT



Что такое функционирование в «Реальном масштабе времени»

Каноническое определение системы реального времени дано Дональдом Гиллиесом и выглядит так: «Системой реального времени является такая система, корректность функционирования которой определяется не только корректностью выполнения вычислений, но и временем, в которое получен требуемый результат. Если требования по времени не выполняются, то считается, что произошел отказ системы». Другие добавляют: «Поэтому необходимо, чтобы было гарантировано выполнение требований по времени. Гарантия выполнения требований по времени необходима, чтобы поведение системы было предсказуемо. Также желательно, чтобы система обеспечивала высокую степень использования ресурсов, чтобы удовлетворять требованиям по времени».

ОС РВ характеризуется прежде всего малым временем реакции на внешние события. Последние версии ОС имеют прерываемое микроядро, что гарантирует быструю реакцию на внешнее событие при любом состоянии системы. Особенность большинства ОС – возможность стопроцентного размещения в памяти ядра, сетевого и графического обеспечения, драйверов и прикладных программ. Для встроенных бездисковых систем это чрезвычайно важно.

Традиционно ОС РВ делятся на "жесткие" и "мягкие". Система "жесткого" РВ должна без сбоев отвечать на внешние события в рамках заранее определенного интервала времени. Время ответа должно быть предсказуемым и не зависеть от текущего состояния системы. "Мягкая" ОС РВ тоже должна отвечать очень быстро, но гарантированное время ответа в ней не обеспечивается. Здесь нужно отметить, что временные характеристики последних версий промышленных ОС практически стерли ранее существовавшую грань между двумя этими разновидностями. Сейчас OS-9, ранее считавшаяся "мягкой" ОС, практически не уступает классическим "жестким" ОС - pSOS+ и VxWorks.

Ядра и операционные системы реального времени

При­мем как очевидные следующие момен­ты.

1. Когда-то операционных систем со­всем не было.

2. Через некоторое время после их появ­ления возникло направление ОС РВ.

3. Все ОС РВ являются многозадачны­ми операционными системами. Зада­чи делят между собой ресурсы вы­числительной системы, в том числе и процессорное время.

Четкой границы между ядром (Kernel) и операционной системой нет. Различают их, как правило, по набору функциональных возможностей. Ядра предоставляют пользователю такие базовые функции, как планирование и синхронизация задач, межзадачная коммуникация, управление памятью и т.п. Операционные системы в дополнение к этому имеют файловую систему, сетевую поддержку, интерфейс с оператором и другие средства высоко­го уровня.

По своей внутренней архитектуре ОС РВ можно условно разделить на монолитные ОС, ОС на основе микроядра и объектно-ориентированные ОС.

Задачи, процессы, потоки 

Принято различать две разно­видности задач: процессы и пото­ки. Процесс представляет собой отдельно загружаемый программный модуль (файл), который, как правило, во время исполнения имеет в памяти свои независимые области для кода и данных. В отличие от этого потоки мо­гут пользоваться общими участками кода и данных в рамках единого про­граммного модуля.

Преимущества потоков.

1. Так как множество потоков способ­но размещаться внутри одного EXE-модуля, это позволяет экономить ре­сурсы как внешней, так и внутрен­ней памяти.

2. Использование потоками общей об­ласти памяти позволяет эффективно организовать межзадачный обмен сообщениями (достаточно передать указатель на сообщение). Процессы не имеют общей области памяти.

3. Как правило, контекст потоков меньше, чем контекст процессов, а значит, время переключения между задачами-потоками меньше, чем между задачами-процессами.

4. Так как все потоки, а иногда и само ядро РВ размещаются в одном ЕХЕ-модуле, значительно упрощается ис­пользование программ-отладчиков

Недостатки потоков.

1. Как правило, потоки не могут быть подгружены динамически. Процессы, в отличие от потоков, подгружаемы, что позволяет динамически изме­нять функции системы в процессе ее работы.

2. То, что потоки имеют доступ к областям данных друг друга, может при­вести к ситуации, когда некорректно работающий поток способен испор­тить данные другого потока. В отли­чие от этого процессы защищены от взаимного влияния, а попытка запи­си в «не свою» память приводит, как правило, к возникновению специ­ального прерывания по обработке «исключительных ситуаций».

Реализация механизмов управления процессами и потоками, возможность их взаимного сосуществования и взаи­модействия определяются конкрет­ным ПО РВ.

Основные свойства задач

Приоритет – это некое целое число, присваиваемое задаче и характеризую­щее ее важность по сравнению с други­ми задачами, выполняемыми в системе. Приоритет используется в основном планировщиком задач для определе­ния того, какая из готовых к работе за­дач должна получить управление. Раз­личают системы с динамической и ста­тической приоритетностью.

Контекст задачи – это набор дан­ных, содержащий всю необходимую информацию для возобновления вы­полнения задачи с того места, где она была ранее прервана. Плани­ровщик задач в случае необходимости сохраняет контекст текущей активной задачи и восстанавливает контекст за­дачи, назначенной к исполнению. Та­кое переключение контекстов и явля­ется, по сути, основным механизмом ОС РВ при переходе от выполнения од­ной задачи к выполнению другой.

Состояние (статус) задачи. С точ­ки зрения операционной системы, за­дача может находиться в нескольких состояниях. Тем не менее, практически в лю­бой ОС РВ загруженная на выполнение задача может находиться, по крайней мере, в трех состояниях.

1. Активная задача – это задача, выпол­няемая системой в текущий момент времени.

2. Готовая задача – это задача, готовая к выполнению и ожидающая у плани­ровщика своей «очереди».

3. Блокированная задача – это задача, выполнение которой приостановле­но до наступления определенных со­бытий.

Пустая задача – это зада­ча, запускаемая самой операционной системой в момент инициализации и выполняемая только тогда, когда в сис­теме нег других готовых для выполнения задач. Пустая задача запускается с самым низким приоритетом и, как пра­вило, представляет собой бесконечный цикл «ничего не делать».

Многократный запуск задач. Как правило, многозадачные ОС позволя­ют запускать несколько копий одной и той же задачи. В целях экономии памяти может быть предус­мотрено совместное использование одного и того же исполняемого кода для всех запущенных копий. В этом случае программа должна обеспечивать повторную входимость (реентера­бельность).

Реентерабельность (повторная входимость) означает возможность без негативных последствий временно пре­рвать выполнение какой-либо функции или подпрограммы, а затем вызвать эту функцию или подпрограмму снова.

Планирование задач

Важной частью любой ОС РВ являет­ся планировщик задач. Его функции оста­ются теми же: определить, какая из за­дач должна выполняться в системе в каждый конкретный момент времени. Самым простым методом планирова­ния, не требующим никакого специ­ального ПО и планировщика как тако­вого, является использование цикли­ческого алгоритма стиле round robin:

Каждая «задача», представляющая со­бой отдельную подпрограмму, выпол­няется циклически. При этом надо придерживаться следующих правил:

1. Подпрограммы не должны содер­жать циклов ожидания

2. Подпрограммы должны выполнять свою работу как можно быстрее

3. При необходимости подпрограмма может сохранять свое окружение и текущие результаты, чтобы в следую­щем цикле возобновить работу с то­го же места.

Можно отметить следующие преиму­щества циклического алгоритма.

1. Простота использования и прозрач­ность для понимания.

2. Минимальные размеры кода и дан­ных. Кроме того, в отличие от алго­ритмов с вытеснением, для всех задач необходим только один стек.

К недостаткам циклического алго­ритма можно отнести отсутствие при­оритетности и очередей. К тому же за­дачи вызываются независимо от того, должны ли они в данный момент что-либо делать или нет, а на прикладного программиста ложится максимальная ответственность за работоспособность системы.

Кооперативная многозадачность – это еще один алгоритм переключе­ния задач. Задача, получившая управление, выполняется до тех пор, пока она сама по своей инициативе не передаст уп­равление другой задаче.

Приоритетная многозадачность с вытеснением – это, по-видимому, наиболее часто используемый в ОС РВ принцип планирования. Основная идея состоит в том, что высокоприо­ритетная задача как только для нее появляется работа, немедленно прерыва­ет низкоприоритетную.

Необходимо отметить, что в одной вычислительной системе могут одно­временно сосуществовать задачи и «жесткого», и «мягкого» реального вре­мени, и что только одна из этих задач, обладающая наивысшим приорите­том, может быть по-настоящему де­терминированной.

Как правило, разработчики стара­ются свести свою систему реального времени к наиболее простым конфи­гурациям, характерным для систем «жесткого» реального времени, иногда даже в ущерб эффективности исполь­зования вычислительных ресурсов. Часто в системе реализует­ся несколько «режимов» работы, каж­дый из которых имеет свой набор вы­полняемых задач с заранее заданными приоритетами. Значительная часть особо ответственных систем по-преж­нему реализуется без применения коммерческих ОС РВ вообще.

Синхронизация задач

Хотя каждая задача в системе как правило, выполняет какую-либо от­дельную функцию, часто возникает необходимость в согласованности (синхронизации) действий, выполня­емых различными задачами. Такая синхронизация необходима, в основ­ном, в следующих случаях.

1. Функции, выполняемые различны­ми задачами, связаны друг с другом. Одна из вариаций в этом случае – это когда задача при определенных условиях порождает одну или не­сколько новых задач.

2. Необходимо упорядочить доступ не­скольких задач к разделяемому ре­сурсу.

3. Необходима синхронизация задачи с внешними событиями. Как правило, для этого используется механизм прерываний.

4. Необходима синхронизация задачи по времени. Для решения этих вопросов в конеч­ном счете используются специаль­ные аппаратные средства, называе­мые таймером.

Тестирование 

Прежде чем устанавливать вашу сис­тему реального времени, рекомендуется про­верить ее работоспособность с по­мощью интенсивных тестов. Это осо­бенно важно для сложных динамических систем. Во время такого тестирования желательно смоделировать наибо­лее неприятные и «тяжелые» режимы работы, аварийные ситуации и т.п. При умозрительном анализе простых сис­тем следует осторожно относиться к рекламной информации разработчи­ков ОС РВ, которые из коммерческих соображений показывают, как прави­ло, параметры для «лучшего случая».

Можно ли обойтись без ОС РВ?

по мере роста числа и сложности функ­ций, которые необходимо выполнять, наличие стандартных средств органи­зации параллельного выполнения задач, работы с таймером, межзадачного обмена информацией и т. п. могут существенно повысить производитель­ность программистов и уменьшить число ошибок. Именно здесь могут про­явить свои положительные стороны ядра и операционные системы реально­го времени, как раз такие средства и предлагающие.

Linux реального времени

У Linux много достоинств: открытость кода; большое количество сопутствующего программного обеспечения, пока в основном ориентированного на серверные применения; наличие неплохой документации на API-интерфейс и ядро операционной системы; работа на процессорах различных классов. В данный момент эта ОС готова к стабильной работе, а открытость ее исходных текстов и архитектуры наряду с растущей популярностью заставляет программистов переносить свои наработки на многие аппаратные платформы. Для задач реального времени сообщество разработчиков Linux активно применяет специальные расширения – RTLinux, KURT и UTIME, позволяющие получить устойчивую среду реального времени. RTLinux представляет собой систему "жесткого" реального времени, а KURT (KU Real Time Linux) относится к системам "мягкого" реального времени. Linux-расширение UTIME, входящее в состав KURT, позволяет добиться увеличения частоты системных часов, что приводит к более быстрому переключению контекста задач.

Операционные системы реального времени и Windows NT

Windows NT, предназначенная в основном для классических приложений, не является хорошей платформой для поддержания обработки в реальном времени. Тем не менее на ее базе можно все-таки построить простую мягкую СРВ, время от времени допускающую опоздания. Следующие обстоятельства могут облегчить построение СРВ на базе NT:

– загрузка CPU низка (DPC имеют достаточно времени);

– критическая работа делается на уровне DPC или на уровне ISR.

Но для жесткой СРВ использование Windows NT невозможно – система реального времени никогда не будет предсказуемой. Что следует изменить в Windows NT, чтобы ее можно было использовать в жестких СРВ?

a) Класс процессов реального времени должен иметь больше уровней.

б) Необходимо решить проблему инверсии приоритетов.

в) Время, затрачиваемое каждым системным вызовом, должно быть предсказуемо и известно.

г) Система прерываний должна быть заменена целиком:

– DPC должны иметь много уровней приоритетов;

– DPC должны быть вытесняемыми более приоритетными DPC.

– драйверы от третьих фирм и системные драйверы должны быть настраиваемыми (уровни прерываний ISR, уровни прерываний DPC) ;

– драйверы от третьих фирм должны быть открыты для разработчиков, должно быть известно по крайней мере максимальное время, затрачиваемое на работу ISR и DPC;

– должно быть известно время маскирования прерываний.

Операционная система QNX

QNX – это первая коммерческая ОС, построенная на принципах микроядра и обмена сообщениями. Система реализована в виде совокупности независимых (но взаимодействующих через обмен сообщениями) процессов различного уровня, каждый из которых реализует определенный вид сервиса.

Предсказуемость, означающую ее применимость к задачам жесткого реального времени. Ни одна версия Unix не может достичь подобного качества, поскольку нереентрабельный код ядра слишком велик. Любой системный вызов в Unix может привести к непредсказуемой задержке. То же самое относится к Windows NT, где реальное время заканчивается между ISR (первичный обработчик прерывания) и DPC (вызов отложенной процедуры).

Масштабируемость и эффективность, достигаемую оптимальным использованием ресурсов и означающую ее применимость для встроенных систем. Можно иметь только тот сервис или те модули, которые реально нужны, причем это не требует серьезных усилий и не порождает проблемы.

Расширяемость и надежность одновременно, поскольку написанный вами драйвер не нужно компилировать в ядро, рискуя вызвать нестабильность системы.

Быстрый сетевой протокол FLEET, прозрачный для обмена сообщениями, автоматически обеспечивающий отказоустойчивость, балансирование нагрузки и маршрутизацию между альтернативными путями доступа. Он не так универсален, как TCP/IP, но гораздо проще в использовании и эффективнее.

Богатый выбор графических подсистем, включающий QNX Windows, X11R5 и Photon, что позволяет разработчикам выбирать ту, которая лучше подходит для их целей.

Существуют также некоторые ограничения, связанные с ориентацией системы на рынок встроенных систем реального времени. Вот важнейшие из них:

– нет поддержки SMP;

– нет своппинга виртуальной памяти на диск;

– неэффективная и нестандартная поддержка нитей (threads);

– нет поддержки Java (как следствие предыдущего пункта);

– нет поддержки отображения файлов в память;

– многочисленные ограничения файловой системы;

– нет поддержки Unix-domain sockets;

– слабые средства разграничения и контроля доступа пользователей;

– отсутствие средств безопасности в рамках собственного сетевого протокола.

Проект Neutrino

Еще до появления Windows 95, стартовал проект создания совершенно новой ОС, которая могла бы воплотить в себе лучшие идеи, разработанные в теории операционных систем. Этот проект получил кодовое название "Neutrino", довольно удачно отражающее его суть – очень маленькая и неуловимо быстрая ОС.

глобальная цель проекта Neutrino – создание POSIX-совместимой масштабируемой ОС, пригодной для построения систем реального времени на самом широком спектре оборудования. термин "Neutrino", если говорить конкретно, применяется на данном этапе не ко всей ОС, а лишь к ее микроядру. Neutrino представляет собой значительно более совершенную модель, выполняющую гораздо больше функций, чем микроядро QNX, имея при этом лучшую производительность и временные характеристики. Улучшенное микроядро позволило также вчетверо уменьшить размер менеджера процессов (с 80 до 20 Кбайт).

Функции, включенные в микроядро, были выбраны по принципу минимального количества операций, необходимых для их исполнения. Все относительно сложные функции были вынесены во внешние модули. По этой причине Neutrino остается достаточно маленьким и простым и по-прежнему оправдывает название "микроядра". управление процессами и памятью не является, строго говоря, функцией Neutrino – это функция менеджера процессов ProcNto, который, кроме этого, занимается поддержкой пространства имен ввода/вывода

Сетевой сервис в Neutrino представлен только протоколом TCP/IP. Разработчики создали специальную версию стека для встроенных систем – Micro TCP/IP, который занимает всего около 40 Кбайт кода за счет ряда ограничений. Для тех же, кому нужны все возможности TCP/IP, например динамическая маршрутизация, будет предоставлен другой вариант, совместимый на 100% с BSD-sockets. Файловая система в Neutrino реализована иначе, чем в QNX. Главное функциональное отличие – улучшенная приспособленность к сменным носителям. Теперь приложение обращается к драйверу, который определяет тип файловой системы (по сигнатурам) и динамически загружает соответствующую файловую систему, реализованную в виде разделяемой библиотеки.


Дата добавления: 2018-08-06; просмотров: 228; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!